5,372 research outputs found

    Spectroscopic Observations of New Oort Cloud Comet 2006 VZ13 and Four Other Comets

    Full text link
    Spectral data are presented for comets 2006 VZ13 (LINEAR), 2006 K4 (NEAT), 2006 OF2 (Broughton), 2P/Encke, and 93P/Lovas I, obtained with the Cerro-Tololo Inter-American Observatory 1.5-m telescope in August 2007. Comet 2006 VZ13 is a new Oort cloud comet and shows strong lines of CN (3880 angstroms), the Swan band sequence for C_2 (4740, 5160, and 5630 angstroms), C_3 (4056 angstroms), and other faint species. Lines are also identified in the spectra of the other comets. Flux measurements of the CN, C_2 (Delta v = +1,0), and C_3 lines are recorded for each comet and production rates and ratios are derived. When considering the comets as a group, there is a correlation of C_2 and C_3 production with CN, but there is no conclusive evidence that the production rate ratios depend on heliocentric distance. The continuum is also measured, and the dust production and dust-to-gas ratios are calculated. There is a general trend, for the group of comets, between the dust-to-gas ratio and heliocentric distance, but it does not depend on dynamical age or class. Comet 2006 VZ13 is determined to be in the carbon-depleted (or Tempel 1 type) class.Comment: 8 pages, 6 figures, 6 tables; Accepted by MNRA

    Mechanical On-Chip Microwave Circulator

    Get PDF
    Nonreciprocal circuit elements form an integral part of modern measurement and communication systems. Mathematically they require breaking of time-reversal symmetry, typically achieved using magnetic materials and more recently using the quantum Hall effect, parametric permittivity modulation or Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free circulator based on reservoir engineered optomechanical interactions. Directional circulation is achieved with controlled phase-sensitive interference of six distinct electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-on-insulator platform is compatible with both superconducting qubits and silicon photonics, and its noise performance is close to the quantum limit. With a high dynamic range, a tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam splitter or wavelength converter, it could pave the way for superconducting qubit processors with integrated and multiplexed on-chip signal processing and readout.Comment: References have been update

    Solution to the twin image problem in holography

    Get PDF
    While the invention of holography by Dennis Gabor truly constitutes an ingenious concept, it has ever since been troubled by the so called twin image problem limiting the information that can be obtained from a holographic record. Due to symmetry reasons there are always two images appearing in the reconstruction process. Thus, the reconstructed object is obscured by its unwanted out of focus twin image. Especially for emission electron as well as for x- and gamma-ray holography, where the source-object distances are small, the reconstructed images of atoms are very close to their twin images from which they can hardly be distinguished. In some particular instances only, experimental efforts could remove the twin images. More recently, numerical methods to diminish the effect of the twin image have been proposed but are limited to purely absorbing objects failing to account for phase shifts caused by the object. Here we show a universal method to reconstruct a hologram completely free of twin images disturbance while no assumptions about the object need to be imposed. Both, amplitude and true phase distributions are retrieved without distortion
    corecore