52 research outputs found

    Gold(I)-catalysed synthesis of a furan analogue of thiamine pyrophosphate.

    Get PDF
    An analogue of thiamine having a furan ring in place of the thiazolium ring has been synthesised by a short and efficient route, involving gold(I)-catalysed cyclisation of an alkynyl alcohol to form the furan ring. The furan analogue of thiamine diphosphate (ThDP) was also made and tested for binding to and inhibition of pyruvate decarboxylase (PDC) from Zymomonas mobilis (overexpressed in E. coli with a N-terminal His-tag). It is a very strong inhibitor, with a K i value of 32.5 pM. It was also shown that the furan analogue of thiamine can be functionalised at the C-2 position, which will allow access to mimics of reaction intermediates of various ThDP-dependent enzymes.This work was supported by a studentship from the Cambridge Commonwealth Trust (A.I.)This is the final version. It was first published by the Beilstein-Institut at http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-10-27

    Imaging cell surface glycosylation in vivo using "double click" chemistry.

    Get PDF
    Dynamic alterations in cell surface glycosylation occur in numerous biological processes that involve cell-cell communication and cell migration. We report here imaging of cell surface glycosylation in live mice using double click chemistry. Cell surface glycans were metabolically labeled using peracetylated azido-labeled N-acetylgalactosamine and then reacted, in the first click reaction, with either a cyclooctyne, in a Huisgen [3 + 2] cycloaddition, or with a Staudinger phosphine, via Staudinger ligation. The second click reaction was a [4 + 2] inverse electron demand Diels-Alder reaction between a trans-cyclooctene and a tetrazine, where the latter reagent had been fluorescently labeled with a far-red fluorophore. After administration of the fluorescent tetrazine, the bifunctional cyclooctyne-cyclooctene produced significant azido sugar-dependent fluorescence labeling of tumor, kidney, liver, spleen, and small intestine in vivo, where the kidney and tumor could be imaged noninvasively in the live mouse

    Unexpected enzyme-catalysed [4+2] cycloaddition and rearrangement in polyether antibiotic biosynthesis

    Get PDF
    Enzymes that catalyse remarkable Diels–Alder-like [4+2] cyclizations have been previously implicated in the biosynthesis of spirotetronate and spirotetramate antibiotics. Biosynthesis of the polyether antibiotic tetronasin is not expected to require such steps, yet the tetronasin gene cluster encodes enzymes Tsn11 and Tsn15, which are homologous to authentic [4+2] cyclases. Here, we show that deletion of Tsn11 led to accumulation of a late-stage intermediate, in which the two central rings of tetronasin and four of its twelve asymmetric centres remain unformed. In vitro reconstitution showed that Tsn11 catalyses an apparent inverse-electron-demand hetero-Diels–Alder-like [4+2] cyclization of this species to form an unexpected oxadecalin compound that is then rearranged by Tsn15 to form tetronasin. To gain structural and mechanistic insight into the activity of Tsn15, the crystal structure of a Tsn15-substrate complex has been solved at 1.7 Å resolution

    Metabolic glycan imaging by isonitrile-tetrazine click chemistry.

    Get PDF
    Seeing the sugar coating: N-Acetyl-glucosamine and mannosamine derivatives tagged with an isonitrile group are metabolically incorporated into cell-surface glycans and can be detected with a fluorescent tetrazine. This bioorthogonal isonitrile-tetrazine ligation is also orthogonal to the commonly used azide-cyclooctyne ligation, and so will allow simultaneous detection of the incorporation of two different sugars

    Kinetics of the Thiazolium Ion-Catalyzed Benzoin Condensation

    No full text

    Prodrugs of Pyrophosphates and Bisphosphonates: Disguising Phosphorus Oxyanions

    No full text
    Pyrophosphates have important functions in living systems and thus pyrophosphate-containing molecules and their more stable bisphosphonate analogues have the potential to be used as drugs for treating many diseases including cancer and viral infections. Both pyrophosphates and bisphosphonates are polyanionic at physiological pH and, whilst this is essential for their biological activity, it also limits their use as therapeutic agents. In particular, the high negative charge density of these compounds prohibits cell entry other than by endocytosis, prevents transcellular oral absorption and causes sequestration to bone. Therefore, prodrug strategies have been developed to temporarily disguise the charges of these compounds. This review examines the various systems that have been used to mask the phosphorus-containing moieties of pyrophosphates and bisphosphonates and also illustrates the utility of such prodrugs.Kwong Mei Medhealt
    corecore