4,371 research outputs found
Analysing powers for the reaction and for np elastic scattering from 270 to 570 MeV
The analysing power of the reaction for neutron energies between threshold and 570 MeV has been determined
using a transversely polarised neutron beam at PSI. The reaction has been
studied in a kinematically complete measurement using a time-of-flight
spectrometer with large acceptance. Analysing powers have been determined as a
function of the c.m. pion angle in different regions of the proton-proton
invariant mass. They are compared to other data from the reactions and . The np elastic scattering analysing power was determined as a
by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-
The reaction from threshold up to 570 MeV
The reaction has been studied in a
kinematically complete measurement with a large acceptance time-of-flight
spectrometer for incident neutron energies between threshold and 570 MeV. The
proton-proton invariant mass distributions show a strong enhancement due to the
pp() final state interaction. A large anisotropy was found in the
pion angular distributions in contrast to the reaction . At small energies, a large forward/backward asymmetry has been
observed. From the measured integrated cross section , the isoscalar cross section has been extracted.
Its energy dependence indicates that mainly partial waves with Sp final states
contribute. Note: Due to a coding error, the differential cross sections as shown in Fig. 9 are too small by a factor of two, and
inn Table 3 the differential cross sections
are too large by a factor of . The integrated cross sections and all
conclusions remain unchanged. A corresponding erratum has been submitted and
accepted by European Physics Journal.Comment: 18 pages, 16 figure
Polarised target for Drell-Yan experiment in COMPASS at CERN, part I
In the polarised Drell-Yan experiment at the COMPASS facility in CERN pion
beam with momentum of 190 GeV/c and intensity about pions/s interacted
with transversely polarised NH target. Muon pairs produced in Drel-Yan
process were detected. The measurement was done in 2015 as the 1st ever
polarised Drell-Yan fixed target experiment. The hydrogen nuclei in the
solid-state NH were polarised by dynamic nuclear polarisation in 2.5 T
field of large-acceptance superconducting magnet. Large helium dilution
cryostat was used to cool the target down below 100 mK. Polarisation of
hydrogen nuclei reached during the data taking was about 80 %. Two oppositely
polarised target cells, each 55 cm long and 4 cm in diameter were used.
Overview of COMPASS facility and the polarised target with emphasis on the
dilution cryostat and magnet is given. Results of the polarisation measurement
in the Drell-Yan run and overviews of the target material, cell and dynamic
nuclear polarisation system are given in the part II.Comment: 4 pages, 2 figures, Proceedings of the 22nd International Spin
Symposium, Urbana-Champaign, Illinois, USA, 25-30 September 201
Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives
Recent theoretical and experimental studies highlight the possibility of new
fundamental particle physics beyond the Standard Model that can be probed by
sub-eV energy experiments. The OSQAR photon regeneration experiment looks for
"Light Shining through a Wall" (LSW) from the quantum oscillation of optical
photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or
axion-like particles (ALPs), in a 9 T transverse magnetic field over the
unprecedented length of m. No excess of events has been
detected over the background. The di-photon couplings of possible new light
scalar and pseudo-scalar particles can be constrained in the massless limit to
be less than GeV. These results are very close to the
most stringent laboratory constraints obtained for the coupling of ALPs to two
photons. Plans for further improving the sensitivity of the OSQAR experiment
are presented.Comment: 7 pages, 7 figure
Latest Results of the OSQAR Photon Regeneration Experiment for Axion-Like Particle Search
The OSQAR photon regeneration experiment searches for pseudoscalar and scalar
axion-like particles by the method of "Light Shining Through a Wall", based on
the assumption that these weakly interacting sub-eV particles couple to two
photons to give rise to quantum oscillations with optical photons in strong
magnetic field. No excess of events has been observed, which constrains the
di-photon coupling strength of both pseudoscalar and scalar particles down to
GeV in the massless limit. This result is the most
stringent constraint on the di-photon coupling strength ever achieved in
laboratory experiments.Comment: 6 pages, 5 figures. appears in Proceedings of the 10th PATRAS
Workshop on Axions, WIMPs and WISPs (2014
Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1
An ensemble of multi-layer scintillators is discussed as an option of the
high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic
measurements of neutrino-less double beta decays. A prototype detector MOON-1,
which consists of 6 layer plastic-scintillator plates, was built to study the
sensitivity of the MOON-type detector. The scintillation photon collection and
the energy resolution, which are key elements for the high-sensitivity
experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons
and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region,
respectively. The multi-layer plastic-scintillator structure with good energy
resolution as well as good background suppression of beta-gamma rays is crucial
for the MOON-type detector to achieve the inverted hierarchy neutrino mass
sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met
Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice
<p>Abstract</p> <p>Background</p> <p>In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells.</p> <p>Results</p> <p>We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers.</p> <p>Conclusion</p> <p>We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.</p
- …