12 research outputs found
Recommended from our members
The genome of the water strider Gerris buenoi reveals expansions of gene repertoires associated with adaptations to life on the water
Background: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group.
Results: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats.
Conclusions: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders
Figure S3_Bayesian
Figure S3_Bayesia
Recommended from our members
Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo
During animal development, planar polarization of the actomyosin cytoskeleton underlies key morphogenetic events such as axis extension and boundary formation. Actomyosin is enriched along compartment boundaries during segmentation of the Drosophila embryo, forming supracellular contractile cables that keep cells segregated at boundaries. Here, we show that these contractile actomyosin cables bias the orientation of division in cells in contact with compartment boundaries. By decreasing actomyosin cable tension locally using laser ablation or, conversely ectopically increasing tension using laser wounding, we demonstrate that localised subcellular force is necessary and sufficient to orient mitoses in vivo. Moreover this bias is independent of cell geometry and involves capture of the spindle pole by the actomyosin cortex
Figure S2_Bayesian
Figure S2_Bayesia
concatenated alignment_amino acids_Figure2
concatenated alignment_amino acids_Figure
concatenated alignment_amino acids_Figure4
concatenated alignment_amino acids_Figure
Figure S3_Maximum Likelihood
Figure S3_Maximum Likelihoo
Cabomba as a model for studies of early angiosperm evolution.
International audienceBACKGROUND: The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE: The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants