91 research outputs found

    An iterative recurrence formula

    Get PDF
    AbstractThe recurrence G(0) = 0, G(n) = n − G(G(n − 1)) (n ⩾ 1), is shown to have the simple solution G(n)= [(n + 1) a], where a = (√5 − 1)2. Generalizations are disscussed

    Sets Represented as the Length-n Factors of a Word

    Full text link
    In this paper we consider the following problems: how many different subsets of Sigma^n can occur as set of all length-n factors of a finite word? If a subset is representable, how long a word do we need to represent it? How many such subsets are represented by words of length t? For the first problem, we give upper and lower bounds of the form alpha^(2^n) in the binary case. For the second problem, we give a weak upper bound and some experimental data. For the third problem, we give a closed-form formula in the case where n <= t < 2n. Algorithmic variants of these problems have previously been studied under the name "shortest common superstring"

    Toric anti-self-dual 4-manifolds via complex geometry

    Full text link
    Using the twistor correspondence, this article gives a one-to-one correspondence between germs of toric anti-self-dual conformal classes and certain holomorphic data determined by the induced action on twistor space. Recovering the metric from the holomorphic data leads to the classical problem of prescribing the Cech coboundary of 0-cochains on an elliptic curve covered by two annuli. The classes admitting Kahler representatives are described; each such class contains a circle of Kahler metrics. This gives new local examples of scalar-flat Kahler surfaces and generalises work of Joyce who considered the case where the distribution orthogonal to the torus action is integrable.Comment: 25 pages, 2 figures, v2 corrected some misprints, v3 corrected more misprints, published version (minus one typo

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1a2...ama_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters

    On Quasiperiodic Morphisms

    Full text link
    Weakly and strongly quasiperiodic morphisms are tools introduced to study quasiperiodic words. Formally they map respectively at least one or any non-quasiperiodic word to a quasiperiodic word. Considering them both on finite and infinite words, we get four families of morphisms between which we study relations. We provide algorithms to decide whether a morphism is strongly quasiperiodic on finite words or on infinite words.Comment: 12 page

    Toric anti-self-dual Einstein metrics via complex geometry

    Full text link
    Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper (math.DG/0602423). The results complement the work of Calderbank-Pedersen (math.DG/0105263), who describe where the Einstein metrics appear amongst the Joyce spaces, leading to a different classification. Taking the twistor transform of our result gives a new proof of their theorem.Comment: v2. Published version. Additional references. 14 page

    On the maximal number of cubic subwords in a string

    Full text link
    We investigate the problem of the maximum number of cubic subwords (of the form wwwwww) in a given word. We also consider square subwords (of the form wwww). The problem of the maximum number of squares in a word is not well understood. Several new results related to this problem are produced in the paper. We consider two simple problems related to the maximum number of subwords which are squares or which are highly repetitive; then we provide a nontrivial estimation for the number of cubes. We show that the maximum number of squares xxxx such that xx is not a primitive word (nonprimitive squares) in a word of length nn is exactly n21\lfloor \frac{n}{2}\rfloor - 1, and the maximum number of subwords of the form xkx^k, for k3k\ge 3, is exactly n2n-2. In particular, the maximum number of cubes in a word is not greater than n2n-2 either. Using very technical properties of occurrences of cubes, we improve this bound significantly. We show that the maximum number of cubes in a word of length nn is between (1/2)n(1/2)n and (4/5)n(4/5)n. (In particular, we improve the lower bound from the conference version of the paper.)Comment: 14 page

    qq-Classical orthogonal polynomials: A general difference calculus approach

    Full text link
    It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthermore, some well known results related to the Rodrigues operator are deduced. A more general characterization Theorem that the one given in [1] and [2] for the q-polynomials of the q-Askey and Hahn Tableaux, respectively, is established. Finally, the families of Askey-Wilson polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner are considered. [1] R. Alvarez-Nodarse. On characterization of classical polynomials. J. Comput. Appl. Math., 196:320{337, 2006. [2] M. Alfaro and R. Alvarez-Nodarse. A characterization of the classical orthogonal discrete and q-polynomials. J. Comput. Appl. Math., 2006. In press.Comment: 18 page

    Reversible maps and composites of involutions in groups of piecewise linear homeomorphisms of the real line

    Get PDF
    An element of a group is reversible if it is conjugate to its own inverse, and it is strongly reversible if it is conjugate to its inverse by an involution. A group element is strongly reversible if and only if it can be expressed as a composite of two involutions. In this paper the reversible maps, the strongly reversible maps, and those maps that can be expressed as a composite of involutions are determined in certain groups of piecewise linear homeomorphisms of the real line

    Signal and System Approximation from General Measurements

    Full text link
    In this paper we analyze the behavior of system approximation processes for stable linear time-invariant (LTI) systems and signals in the Paley-Wiener space PW_\pi^1. We consider approximation processes, where the input signal is not directly used to generate the system output, but instead a sequence of numbers is used that is generated from the input signal by measurement functionals. We consider classical sampling which corresponds to a pointwise evaluation of the signal, as well as several more general measurement functionals. We show that a stable system approximation is not possible for pointwise sampling, because there exist signals and systems such that the approximation process diverges. This remains true even with oversampling. However, if more general measurement functionals are considered, a stable approximation is possible if oversampling is used. Further, we show that without oversampling we have divergence for a large class of practically relevant measurement procedures.Comment: This paper will be published as part of the book "New Perspectives on Approximation and Sampling Theory - Festschrift in honor of Paul Butzer's 85th birthday" in the Applied and Numerical Harmonic Analysis Series, Birkhauser (Springer-Verlag). Parts of this work have been presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing 2014 (ICASSP 2014
    corecore