4 research outputs found

    Technology of Microclimate Regulation in Organic and Energy-Sustainable Livestock Production

    Get PDF
    The control of climatic conditions where cattle are kept is one of the challenges in the livestock sector regarding the digital automation of the process. (1) Background: The main purpose of this study is to define the optimal foundations for automatic climatic systems in organic and energy-sustainable livestock production. In particular, the following components are suggested: (a) the determination of current deviations and interdependency between factors; (b) an algorithm for defining the possible sources of regulation; (c) the ranking approach of the optimal sequence of possible sources; and (d) ensuring transparency and coordination of the model with organic and energy certificates. (2) Methods: This investigation accumulates information on the characteristics of the main microclimatic parameters and simulates their possible combinations in a livestock building in Poland within 24 h of a spring day. A few indices are considered that signal the impact on the thermal comfort of cattle based on the example of recommended measures for the Angus steer genotype. (3) Results: The proposed transparent algorithm is designed for selecting and ranking potential sources of microclimate control according to three criteria. (4) Conclusions: This paper potentially contributes to determining the most optimal digital algorithm for managing microclimate conditions to ensure acceptable comfort for animals, meeting the requirements of organic certification with minimum costs of production, and switching to sustainable types of energy with consideration of technologies’ efficiency. The algorithm is scalable and adjustable to the individual conditions of any livestock premise with a digitally controlled environment

    The penetration resistance as a soil degradation indicator in the viticulture

    No full text
    This paper deals with monitoring of changes in soil compaction at two experimental sites (Lednice and Valtice) in the alleyway of vineyards. The experimental measurements were carried out during the period 2009–2011. Penetration resistance of the soil was measured using the penetrometer (type PN 10) to a depth up to 520 mm. The measurements were carried out alternatively in variants with grassed and cultivated alleyways of vineyards. The samples were performed in the wheeltracks and in the middle of an alleyway. The control samples were performed between the plants in the row. The results show that the penetration resistance reaches lower values on the grassed alleyway. At both variants is obvious increase of the penetration resistance above the critical value already in a depth of 0.2 m. From the annual comparison of the penetration resistance it is clear the higher increase in the third year

    Seeder with Different Seeding Apparatus in Maize Sowing

    No full text
    Precision sowing trend is development of technology of sowing maize. The advantage of planting corn with precision seeder includes saving seeds, fewer working hours, achieves more uniform spacing in the row and depth of planting, and for these reasons it follows that the crop will be uniform in height and strength, which is a prerequisite for high yields. It was performed a field testing of three seed in sowing maize at three different speeds of sowing. Tests were carried out to determine and compare the quality of three planters with under pressure. Seeders worked in similar conditions but third seeder noted presence of crust on the soil surface. They were tested at a speed of 6, 8 and 10 km/h. At a speed of 6 km/h all three planters worked with a coefficient of variation less than 25% and with values ​​from 19.25 to 22.72%, which meets the criteria of quality planting. The percentage of pairwise from 1.66 to 2.64%. The percentage of empty spaces were from 4.24 to 4.93%. Proportion of seeds sown at a given space were from 92.5 to 94.09%, which is an indicator that sowing was successfully. No records are examined quality differences in sowing seed

    Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production

    No full text
    This paper considers the evolution of processes applied in agriculture for field operations developed from non-organized handmade activities into very specialized and organized production processes. A set of new approaches based on the application of metaheuristic optimization methods and smart automatization known as Agriculture 4.0 has enabled a rapid increase in in-field operations’ productivity and offered unprecedented economic benefits. The aim of this paper is to review modern approaches to agriculture machinery movement optimization with applications in sugarcane production. Approaches based on algorithms for the division of spatial configuration, route planning or path planning, as well as approaches using cost parameters, e.g., energy, fuel and time consumption, are presented. The combination of algorithmic and economic methodologies including evaluation of the savings and investments and their cost/benefit relation is discussed
    corecore