2,921 research outputs found
Spectroscopic imaging of single atoms within a bulk solid
The ability to localize, identify and measure the electronic environment of
individual atoms will provide fundamental insights into many issues in
materials science, physics and nanotechnology. We demonstrate, using an
aberration-corrected scanning transmission microscope, the spectroscopic
imaging of single La atoms inside CaTiO3. Dynamical simulations confirm that
the spectroscopic information is spatially confined around the scattering atom.
Furthermore we show how the depth of the atom within the crystal may be
estimated.Comment: 4 pages and 3 figures. Accepted in Phys.Rev.Let
Posttranslational processing of concanavalin A precursors in jackbean cotyledons
Metabolic labeling of immature jackbean cotyledons with 14C-amino acids was used to determine the processing steps involved in the assembly of concanavalin A. Pulse-chase experiments and analyses of immunoprecipitated lectin forms indicated a complex series of events involving seven distinct species. The structural relatedness of all of the intermediate species was confirmed by two-dimensional mapping of 125I-tryptic peptides. An initial glycosylated precursor was deglycosylated and cleaved into smaller polypeptides, which subsequently reannealed over a period of 10-27 h. NH2-terminal sequencing of the abundant precursors confirmed that the intact subunit of concanavalin A was formed by the reannealing of two fragments, since the alignment of residues 1-118 and 119-237 was reversed in the final form of the lectin identified in the chase and the precursor first labeled. When the tissue was pulse-chased in the presence of monensin, processing of the glycosylated precursor was inhibited. The weak bases NH4Cl and chloroquine were without effect. Immunocytochemical studies showed that monensin treatment caused the accumulation of immunoreactive material at the cell surface and indicated that the ionophore had induced the secretion of a component normally destined for deposition within the protein bodies. Consideration of the tertiary structure of the glycosylated precursor and mature lectin showed that the entire series of processing events could occur without significant refolding of the initial translational product. Proteolytic events included removal of a peptide from the surface of the precursor molecule that connected the NH2- and COOH-termini of the mature protein. This processing activated the carbohydrate-binding activity of the lectin. The chase data suggest the occurrence of a simultaneous cleavage and formation of a peptide bond, raising the possibility that annealment of the fragments to give rise to the mature subunit involves a transpeptidation event rather than cleavage and subsequent religation
Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses
Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or
nanopulses, have been recently approved by the Federal Communications
Commission for a number of various applications. They are also being explored
for applications in biotechnology and medicine. The simulation of the
propagation of a nanopulse through biological matter, previously performed
using a two-dimensional finite difference-time domain method (FDTD), has been
extended here into a full three-dimensional computation. To account for the UWB
frequency range, a geometrical resolution of the exposed sample was ,
and the dielectric properties of biological matter were accurately described in
terms of the Debye model. The results obtained from three-dimensional
computation support the previously obtained results: the electromagnetic field
inside a biological tissue depends on the incident pulse rise time and width,
with increased importance of the rise time as the conductivity increases; no
thermal effects are possible for the low pulse repetition rates, supported by
recent experiments. New results show that the dielectric sample exposed to
nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we
obtained the dominant resonant frequency and the -factor of the resonator.Comment: 15 pages, 8 figure
The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration
This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) DTG PhD studentship to A.F., an Anatomical Society PhD Studentship (‘The Roles of planar cell polarity genes in a classical anatomical system: the cornea’) to D.A.P./J.M.C. and BBSRC Project Grants BB/J015172/1 and BB/J015237/1 to J.D.W. and J.M.C., respectively.Peer reviewedPublisher PD
Study of Small-Scale Anisotropy of Ultrahigh Energy Cosmic Rays Observed in Stereo by HiRes
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence
detector which, operating in stereo mode, has a typical angular resolution of
0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes
is thus an excellent instrument for the study of the arrival directions of
ultrahigh energy cosmic rays. We present the results of a search for
anisotropies in the distribution of arrival directions on small scales (<5
degrees) and at the highest energies (>10^19 eV). The search is based on data
recorded between 1999 December and 2004 January, with a total of 271 events
above 10^19 eV. No small-scale anisotropy is found, and the strongest
clustering found in the HiRes stereo data is consistent at the 52% level with
the null hypothesis of isotropically distributed arrival directions.Comment: 4 pages, 3 figures. Matches accepted ApJL versio
An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices
A new interface engineering method is demonstrated for the preparation of an efficient white organic light-emitting diode (WOLED) by embedding an ultrathin layer of the novel ambipolar red emissive compound 4,4-difluoro-2,6-di(4-hexylthiopen-2-yl)-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (bThBODIPY) in the exciplex formation region. The compound shows a hole and electron mobility of 3.3 × 10–4 and 2 × 10–4 cm2 V–1 s–1, respectively, at electric fields higher than 5.3 × 105 V cm–1. The resulting WOLED exhibited a maximum luminance of 6579 cd m–2 with CIE 1931 color coordinates (0.39; 0.35). The bThBODIPY dye is also demonstrated to be an effective laser dye for a cholesteric liquid crystal (ChLC) laser. New construction of the ChLC laser, by which a flat capillary with an optically isotropic dye solution is sandwiched between two dye-free ChLC cells, provides photonic lasing at a wavelength well matched with that of a dye-doped planar ChLC cell
Secondary school pupils' preferences for different types of structured grouping practices
The aim of this paper is to explore pupils’ preferences for particular types of grouping practices an area neglected in earlier research focusing on the personal and social outcomes of ability grouping. The sample comprised over 5,000 year 9 pupils (aged 13-14 years) in 45 mixed secondary comprehensive schools in England. The schools represented three levels of ability grouping in the lower school (years 7 to 9). Pupils responded to a questionnaire which explored the types of grouping that they preferred and the reasons for their choices. The majority of pupils preferred setting, although this was mediated by their set placement, type of school, socio-economic status and gender. The key reason given for this preference was that it enabled work to be matched to learning needs. The paper considers whether there are other ways of achieving this avoiding the negative social and personal outcomes of setting for some pupils
- …