6 research outputs found

    Design and testing of a turbulence probe for harsh flows

    No full text
    The force of wind on the ground created by turbulent eddies is commonly used to describe the horizontal flux of material during wind erosion. Here we present the Murdoch Turbulence Probe, an instrument for use in both clean and eroding flows which uses pressure differences to measure the three components of wind velocity. Correlation techniques calculate the forces near the ground and turbulence statistics in nearly real time, including turbulent velocity fluctuations from less than 0.1 Hz to 200 Hz, mean flow velocities, Reynolds stresses as well as the integral length and time scales. In the portable wind-tunnel used by Agriculture Western Australia, turbulence statistics were recorded over stable surfaces and in blowing sand from the initiation of erosion up to the time the sand supply was exhausted. Estimates of the friction velocity derived from the turbulence probe were compared with estimates obtained from the wind speed profile measured with a rake of pitot and static tubes. The Murdoch Turbulence Probe appears to work well in sandblasting conditions. Relative turbulence intensities ranged from 0.11 to 0.2 and are in close agreement with values in the literature. The ratio of the turbulence to the friction velocity (3 to 3.2) is at the high end of the reported range. The Reynolds stress measurements agree closely with predictions of the threshold friction velocities of the sand and estimates from the wind speed profile with a von Kármán constant of about 0.3, lower than the commonly accepted value of 0.4. We suggest that the wind-tunnel profile represents the 'outer layer' of the boundary-layer that may best be described by a 'Wake Law' or 'Defect Law'. At about 54 mm above the surface, the friction velocity decreases from 0.64 m/s to 0.39 m/s and the mean velocity increases from 9.6 m/s to 11.6 m/s as the supply of sand is depleted. In addition to the friction velocity, other scales may be necessary to characterise the overriding effect of the wind and in extending wind-tunnel results to the field

    A model to predict the effects of prostrate ground cover on wind erosion

    No full text
    This paper presents a simple physical model which assumes that the loss of soil is proportional to the fraction of the uncovered ground, when the aerodynamic roughness is small. Integration shows that the total soil loss decreases exponentially with the fraction of ground covered. The model is compared with the soil flux generated in a portable wind tunnel over prostrate lupin residues and results from other studies. The data are well described by the model. Unexpectedly, the same data seem to predict soil fluxes that are not necessarily proportional to the cube of the excess wind speed above the threshold level

    Estimation of the surface stress from the streamwise pressure gradient: The Kármán Integral Momentum Equation revisited

    No full text
    A method is developed to estimate the stress at the surface in a portable wind tunnel for wind erosion studies. The boundary layer height and the pressure gradient are used in a simple expression from the Kármán Integral Momentum Equation. Values of friction velocity u* are within 10% of experimental values obtained through correlation techniques, including measurements of differential pressures with the Murdoch Turbulence Probe MTP and the X-wire, hot-wire anemometer XWA. Wind velocity and stress profiles reveal logarithmic trends and a 'constant stress layer' near the surface in the DAWA portable wind tunnel. Realignment of the statistics with the mean wind is essential

    Approaches to modelling land erodibility by wind

    No full text
    Land susceptibility to wind erosion is governed by complex multiscale interactions between soil erodibility and non-erodible roughness elements populating the land surface. Numerous wind erosion modelling systems have been developed to quantify soil loss and dust emissions at the field, regional and global scales. All of these models require some component that defines the susceptibility of the land surface to erosion, ie, land erodibility. The approaches taken to characterizing land erodibility have advanced through time, following developments in empirical and process-based research into erosion mechanics, and the growing availability of moderate to high-resolution spatial data that can be used as model inputs. Most importantly, the performance of individual models is highly dependent on the means by which soil erodibility and surface roughness effects are represented in their land erodibility characterizations. This paper presents a systematic review of a selection of wind erosion models developed over the last 50 years. The review evaluates how land erodibility has been modelled at different spatial and temporal scales, and in doing this the paper identifies concepts behind parameterizations of land erodibility, trends in model development, and recent progress in the representation of soil, vegetation and land management effects on the susceptibility of landscapes to wind erosion. The paper provides a synthesis of the capabilities of the models in assessing dynamic patterns of land erodibility change, and concludes by identifying key areas that require research attention to enhance our capacity to achieve this task

    Fog Research: A Review of Past Achievements and Future Perspectives

    No full text
    corecore