119 research outputs found

    Role of bacteria in acute exacerbations of chronic obstructive pulmonary disease

    Get PDF
    Levent Erkan, Oguz Uzun, Serhat Findik, Didem Katar, Ahmet Sanic, Atilla G AticiOndokuz Mayis University, Faculty of Medicine, Department of Pulmonary Medicine, Samsun, TurkeyBackground and study objective: Infections are major causes of acute exacerbations of chronic obstructive pulmonary disease (COPD) which result in significant mortality and morbidity. The primary aim of the study was to determine the microbiological spectrum including atypical agents in acute exacerbations. The secondary aim was to evaluate resistance patterns in the microorganisms.Methods: The sputum culture of 75 patients admitted to our clinic from January 1, 1999 to December 31, 2002 was evaluated prospectively, for aerobic Gram-positive and Gram-negative bacteria, and serologically for Chlamydophila pneumoniae and Mycoplasma pneumoniae. Sensitivity patterns in potentially pathogenic microorganisms (PPMs) were also investigated.Results: An infectious agent was identified in 46 patients, either serologically or with sputum culture. Pathogens most commonly demonstrated were: Haemophilus influenzae (30%), Chlamydophila pneumoniae (17%), and Mycoplasma pneumoniae (9%). Mixed infections were diagnosed in 9 patients. PPMs showed a high resistance rate to commonly used antibiotics.Conclusion: We have shown that microorganisms causing acute exacerbations of COPD are not only typical bacteria (46%) but also atypical pathogens (26%), with unpredictable high rates. Typical agents showed a high resistance to commonly used antibiotics.Keywords: chronic obstructive pulmonary disease, acute exacerbation, infection, atypical pathogens, Haemophilus influenza

    Preoperative Embolization in Surgical Treatment of a Primary Hemangiopericytoma of the Rib : A Case Report

    Get PDF
    Primary hemangiopericytoma of the rib is extremely rare and only a few cases have been reported. A 62-yr-old man presented with an aching chest pain and dyspnea. Thoracic computed tomography revealed a homogenous mass expanding the right seventh rib. A diagnosis of hemangiopericytoma was established by percutaneous needle biopsy. Preoperative embolization of the feeding vessels of the tumor was performed in order to prevent perioperative bleeding. There was no significant bleeding during the surgery, where complete resection of the tumor with 7th to 9th ribs with a surgical margin of 5 cm was performed. Postoperative course was uneventful and there has been no recurrence for thirteen months. To our knowledge, there has been no report to apply a preoperative embolization of a primary hemangiopericytoma of the rib

    Down Regulation of a Matrix Degrading Cysteine Protease Cathepsin L, by Acetaldehyde: Role of C/EBPα

    Get PDF
    BACKGROUND: The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. METHODOLOGY AND RESULTS: We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. CONCLUSION: Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    • 

    corecore