1,065 research outputs found

    Current challenges in cell wall biology in the cereals and grasses

    Get PDF
    Plant cell walls consist predominantly of polysaccharides and lignin. There has been a surge of research activity in plant cell wall biology in recent years, in two key areas. Firstly, in the area of human health it is now recognized that cell wall polysaccharides are key components of dietary fiber, which carries significant health benefits. Secondly, plant cell walls are major constituents of lignocellulosic residues that are being developed as renewable sources of liquid transport biofuels. In both areas, the cell walls of the Poaceae, which include the cereals and grasses, are particularly important. The non-cellulosic wall polysaccharides of the Poaceae differ in comparison with those of other vascular plants, insofar as they contain relatively high levels of heteroxylans as “core” polysaccharide constituents and relatively smaller amounts of heteromannans, pectic polysaccharides, and xyloglucans. Certain grasses and cereals walls also contain (1,3;1,4)-β-glucans, which are not widely distributed outside the Poaceae. Although some genes involved in cellulose, heteroxylan, and (1,3;1,4)-β-glucan synthesis have been identified, mechanisms that control expression of the genes are not well defined. Here we review current knowledge of cell wall biology in plants and highlight emerging technologies that are providing new and exciting insights into the most challenging questions related to the synthesis, re-modeling and degradation of wall polysaccharides

    Combining transcriptional datasets using the generalized singular value decomposition

    Get PDF
    Background Both microarrays and quantitative real-time PCR are convenient tools for studying the transcriptional levels of genes. The former is preferable for large scale studies while the latter is a more targeted technique. Because of platform-dependent systematic effects, simple comparisons or merging of datasets obtained by these technologies are difficult, even though they may often be desirable. These difficulties are exacerbated if there is only partial overlap between the experimental conditions and genes probed in the two datasets. Results We show here that the generalized singular value decomposition provides a practical tool for merging a small, targeted dataset obtained by quantitative real-time PCR of specific genes with a much larger microarray dataset. The technique permits, for the first time, the identification of genes present in only one dataset co-expressed with a target gene present exclusively in the other dataset, even when experimental conditions for the two datasets are not identical. With the rapidly increasing number of publically available large scale microarray datasets the latter is frequently the case. The method enables us to discover putative candidate genes involved in the biosynthesis of the (1,3;1,4)-β-D-glucan polysaccharide found in plant cell walls. Conclusion We show that the generalized singular value decomposition provides a viable tool for a combined analysis of two gene expression datasets with only partial overlap of both gene sets and experimental conditions. We illustrate how the decomposition can be optimized self-consistently by using a judicious choice of genes to define it. The ability of the technique to seamlessly define a concept of "co-expression" across both datasets provides an avenue for meaningful data integration. We believe that it will prove to be particularly useful for exploiting large, publicly available, microarray datasets for species with unsequenced genomes by complementing them with more limited in-house expression measurements.Andreas W Schreiber, Neil J Shirley, Rachel A Burton and Geoffrey B Finche

    ne-Course for Learning Programming

    Get PDF

    Cinematic and aesthetic cartographies of subjective mutation

    Get PDF
    This article exmaines the use of cinema as a mapping of subjective mutation in the work of Deleuze, Gauttari and Berardi. Drawing on Deleuze's distinciton between the reduction of the art-work to the symptom and the idea of art as symptomatology, the article focuses on Berardi's use of cinematic examples, posing the quesiton in each case of to what extent they function as symptomatologies or mere symptoms of cultural and subjective mutations in examples ranging from Bergman's Persona to Van Sant's Elephant to finish on speculations about Fincher's The Social Network as a cirtical engagement with subjective mutation in the 21st Century

    A Simple Micromilled Microfluidic Impedance Cytometer with Vertical Parallel Electrodes for Cell Viability Analysis

    Get PDF
    Microfluidic impedance cytometry has been demonstrated as an effective platform for single cell analysis, taking advantage of microfabricated features and dielectric cell sensing methods. In this study, we present a simple microfluidic device to improve the sensitivity, accuracy, and throughput of single suspension cell viability analysis using vertical sidewall electrodes fabricated by a widely accessible negative manufacturing method. A microchannel milled through a 75 Âľm platinum wire, which was embedded into poly-methyl-methacrylate (PMMA), created a pair of parallel vertical sidewall platinum electrodes. Jurkat cells were interrogated in a custom low-conductivity buffer (1.2 Âą 0.04 mS/cm) to reduce current leakage and increase device sensitivity. Confirmed by live/dead staining and electron microscopy, a single optimum excitation frequency of 2 MHz was identified at which live and dead cells were discriminated based on the disruption in the cell membrane associated with cell death. At this frequency, live cells were found to exhibit changes in the impedance phase with no appreciable change in magnitude, while dead cells displayed the opposite behavior. Correlated with video microscopy, a computational algorithm was created that could identify cell detection events and determine cell viability status by application of a mathematical correlation method

    Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains

    Get PDF
    Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II

    Altered expression of genes implicated in xylan biosynthesis affects penetration resistance against powdery mildew

    Get PDF
    Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.Jamil Chowdhury, Stefanie LĂźck, Jeyaraman Rajaraman, Dimitar Douchkov, Neil J. Shirley, Julian G. Schwerdt, Patrick Schweizer, Geoffrey B. Fincher, Rachel A. Burton and Alan Littl

    Electron-phonon effects and transport in carbon nanotubes

    Full text link
    We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.Comment: 5 pages and 4 figure
    • …
    corecore