583 research outputs found

    Whose Job Is It Anyway? Preparing Arbitrators for Consumer Dispute Resolution Programs

    Get PDF
    [Excerpt] In many respects, we have entered into a golden era in the evolution and study of conflict resolution. One of the most obvious examples of this new era is the significant growth of conflict resolution programs in institutions of higher education. The purpose of this article is to examine the current state of university and law school conflict resolution programs. We then offer some conclusions and recommendations for addressing what we believe to be the critically important role academia can and should play in training arbitrators. Our review of academic programs suggests that the array of offerings has grown substantially and includes credit courses, clinics, degree programs, and certificates in conflict resolution. At our own institution, Cornell University, the response by our student body to opportunities for studying conflict resolution has overwhelmed our current capacity to meet their needs and interests

    Cinematic and aesthetic cartographies of subjective mutation

    Get PDF
    This article exmaines the use of cinema as a mapping of subjective mutation in the work of Deleuze, Gauttari and Berardi. Drawing on Deleuze's distinciton between the reduction of the art-work to the symptom and the idea of art as symptomatology, the article focuses on Berardi's use of cinematic examples, posing the quesiton in each case of to what extent they function as symptomatologies or mere symptoms of cultural and subjective mutations in examples ranging from Bergman's Persona to Van Sant's Elephant to finish on speculations about Fincher's The Social Network as a cirtical engagement with subjective mutation in the 21st Century

    Ready or Not, Here They Come: Acting Interns’ Experience and Perceived Competency Performing Basic Medical Procedures

    Get PDF
    OBJECTIVE: To assess acting interns’ (AI’s) experience with and perceived level of competency performing 6 basic medical procedures. DESIGN: Fourth-year medical students at the University of Cincinnati (UCCOM) are required to complete 2 AI rotations in Internal Medicine. All AIs in 2003–2004 (n = 150) and 2004–2005 (n = 151) were asked to complete a survey about whether during each of their rotations they had performed and felt competent performing the following procedures: phlebotomy, intravenous (IV) catheter insertion, arterial blood gas (ABG), nasogastric (NG) tube insertion, lumbar puncture (LP), and Foley catheter insertion. RESULTS: Four hundred sixty-seven of 601 possible surveys (across both years and both rotations) were completed (78% response rate). During both rotations, relatively few students performed the procedures, ranging from 9% for Foley catheter insertion (24/208) to 50% for both ABG and NG tube insertion (130/259). The two procedures most often performed were ABG (range 46–50%) and NG tube insertion (range 42–50%). Feelings of competency varied from 12% (LP) to 82% (Foley catheter). Except for LP, if students performed a procedure at least once, they reported feeling more competent (range 85% for ABG to 96% for Foley catheter insertion). Among the students who performed LP during a rotation, many still did not feel competent performing LPs: 23 (74%) in rotation 1 and 20 (40%) in rotation 2. CONCLUSION: Many fourth-year students at UCCOM do not perform basic procedures during their acting internship rotations. Procedural performance correlates with feelings of competency. Lumbar puncture competency may be too ambitious a goal for medical students

    Electron-phonon effects and transport in carbon nanotubes

    Full text link
    We calculate the electron-phonon scattering and binding in semiconducting carbon nanotubes, within a tight binding model. The mobility is derived using a multi-band Boltzmann treatment. At high fields, the dominant scattering is inter-band scattering by LO phonons corresponding to the corners K of the graphene Brillouin zone. The drift velocity saturates at approximately half the graphene Fermi velocity. The calculated mobility as a function of temperature, electric field, and nanotube chirality are well reproduced by a simple interpolation formula. Polaronic binding give a band-gap renormalization of ~70 meV, an order of magnitude larger than expected. Coherence lengths can be quite long but are strongly energy dependent.Comment: 5 pages and 4 figure

    Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3

    Full text link
    Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide range in energy and reciprocal space with inelastic neutron scattering. In the ferromagnetic phase, propagating spin wave modes become paramagnon-like diffusive modes beyond a critical wave vector q0, indicating substantial disorder in the long-range ordered state. In the spin glass phase, spin dynamics is strongly q-dependent, suggesting remnant short-range spin correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase is determined.Comment: 4 pages, 5 figure

    Spin and charge excitations in incommensurate spin density waves

    Full text link
    Collective excitations both for spin- and charge-channels are investigated in incommensurate spin density wave (or stripe) states on two-dimensional Hubbard model. By random phase approximation, the dynamical susceptibility \chi(q,\omega) is calculated for full range of (q,\omega) with including all higher harmonics components. An intricate landscape of the spectra in \chi(q,\omega) is obtained. We discuss the anisotropy of the dispersion cones for spin wave excitations, and for the phason excitation related to the motion of the stripe line. Inelastic neutron experiments on Cr and its alloys and stripe states of underdoped cuprates are proposed

    Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes

    Full text link
    Motivated by recent stimulative observations in halogen (X)-bridged binuclear transition-metal (M) complexes, which are referred to as MMX chains, we study solitons in a one-dimensional three-quarter-filled charge-density-wave system with both intrasite and intersite electron-lattice couplings. Two distinct ground states of MMX chains are reproduced and the soliton excitations on them are compared. In the weak-coupling region, all the solitons are degenerate to each other and are uniquely scaled by the band gap, whereas in the strong-coupling region, they behave differently deviating from the scenario in the continuum limit. The soliton masses are calculated and compared with those for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn. 71, No. 1 (2002

    Nonadiabatic approach to dimerization gap and optical absorption coefficient of the Su-Schrieffer-Heeger model

    Full text link
    An analytical nonadiabatic approach has been developed to study the dimerization gap and the optical absorption coefficient of the Su-Schrieffer-Heeger model where the electrons interact with dispersive quantum phonons. By investigating quantitatively the effects of quantum phonon fluctuations on the gap order and the optical responses in this system, we show that the dimerization gap is much more reduced by the quantum lattice fluctuations than the optical absorption coefficient is. The calculated optical absorption coefficient and the density of states do not have the inverse-square-root singularity, but have a peak above the gap edge and there exist a significant tail below the peak. The peak of optical absorption spectrum is not directly corresponding to the dimerized gap. Our results of the optical absorption coefficient agree well with those of the experiments in both the shape and the peak position of the optical absorption spectrum.Comment: 14 pages, 7 figures. to be published in PR
    • …
    corecore