111 research outputs found

    Does individual learning styles influence the choice to use a web-based ECG learning programme in a blended learning setting?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The compressed curriculum in modern knowledge-intensive medicine demands useful tools to achieve approved learning aims in a limited space of time. Web-based learning can be used in different ways to enhance learning. Little is however known regarding its optimal utilisation. Our aim was to investigate if the individual learning styles of medical students influence the choice to use a web-based ECG learning programme in a blended learning setting.</p> <p>Methods</p> <p>The programme, with three types of modules (learning content, self-assessment questions and interactive ECG interpretation training), was offered on a voluntary basis during a face to face ECG learning course for undergraduate medical students. The Index of Learning Styles (ILS) and a general questionnaire including questions about computer and Internet usage, preferred future speciality and prior experience of E-learning were used to explore different factors related to the choice of using the programme or not.</p> <p>Results</p> <p>93 (76%) out of 123 students answered the ILS instrument and 91 the general questionnaire. 55 students (59%) were defined as users of the web-based ECG-interpretation programme. Cronbach's alpha was analysed with coefficients above 0.7 in all of the four dimensions of ILS. There were no significant differences with regard to learning styles, as assessed by ILS, between the user and non-user groups; Active/Reflective; Visual/Verbal; Sensing/Intuitive; and Sequential/Global (p = 0.56-0.96). Neither did gender, prior experience of E-learning or preference for future speciality differ between groups.</p> <p>Conclusion</p> <p>Among medical students, neither learning styles according to ILS, nor a number of other characteristics seem to influence the choice to use a web-based ECG programme. This finding was consistent also when the usage of the different modules in the programme were considered. Thus, the findings suggest that web-based learning may attract a broad variety of medical students.</p

    The spring-loaded genome: Nucleosome redistributions are widespread, transient, and DNA-directed

    No full text
    Nucleosome occupancy plays a key role in regulating access to eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 h post-KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro-assembled nucleosomes. We demonstrate that both the predicted model and the assembled nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 h post-KSHV reactivation. We suggest a model in which loci are held in an unfavorable chromatin architecture and 'spring' to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans. 2014 Hansen et a
    corecore