64 research outputs found

    Kinship, dear enemies, and costly combat:The effects of relatedness on territorial overlap and aggression in a cooperative breeder

    Get PDF
    Many species maintain territories, but the degree of overlap between territories and the level of aggression displayed in territorial conflicts can vary widely, even within species. Greater territorial overlap may occur when neighboring territory holders are close relatives. Animals may also differentiate neighbors from strangers, with more familiar neighbors eliciting less‐aggressive responses during territorial conflicts (the “dear enemy” effect). However, research is lacking in how both kinship and overlap affect territorial conflicts, especially in group‐living species. Here, we investigate kinship, territorial overlap, and territorial conflict in a habituated wild population of group‐living cooperatively breeding birds, the southern pied babbler Turdoides bicolor. We find that close kin neighbors are beneficial. Territories overlap more when neighboring groups are close kin, and these larger overlaps with kin confer larger territories (an effect not seen for overlaps with unrelated groups). Overall, territorial conflict is costly, causing significant decreases in body mass, but conflicts with kin are shorter than those conducted with nonkin. Conflicts with more familiar unrelated neighbors are also shorter, indicating these neighbors are “dear enemies.” However, kinship modulates the “dear enemy” effect; even when kin are encountered less frequently, kin elicit less‐aggressive responses, similar to the “dear enemy” effect. Kin selection appears to be a main influence on territorial behavior in this species. Groups derive kin‐selected benefits from decreased conflicts and maintain larger territories when overlapping with kin, though not when overlapping with nonkin. More generally, it is possible that kinship extends the “dear enemy” effect in animal societies

    Vocal cues to identity:Pied babblers produce individually distinct but not stable loud calls

    Get PDF
    The ability to identify social partners can play a key role in the coordination of social behaviours in group-living animals. Coordinating social behaviours over long distances becomes problematic, as cues to identity are often limited to one or two sensory modalities. This limitation can often select for strong individuality in those cues used for long-distance communication. Pied babblers, Turdoides bicolor, produce a number of different types of 'loud calls' which are frequently used to signal to individuals beyond the range of visual or olfactory pathways of communication. Here, we show that three of these 'loud call' types, the v-shaped chatter, the double note ascending chatter and the atonal chatter, are each individually distinct. We hypothesise that individuality in the three loud call types tested here may represent a possible pathway to social recognition in this species that may have important consequences for social interactions. However, we also found that the atonal chatter was unstable between years suggesting that this particular call type may not be a reliable long-term indicator to identity which may affect long-term recognition in this species.11 page(s

    Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism

    Get PDF
    Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues

    Physical activity engagement in early rheumatoid arthritis: a qualitative study to inform intervention development

    Get PDF
    © 2015 Chartered Society of Physiotherapy Background Physical activity (PA) in patients with rheumatoid arthritis (RA) is lower than in the general population. PA can improve physical function in RA, decrease chronic inflammation and reduce pain, without adversely affecting disease activity. Objectives To explore patient's views on approaches to delivering PA programmes and inform a programme to maximise functional ability through long-term engagement with PA. Methods Qualitative data were collected via three focus groups which explored the views of people with RA of their PA support needs following diagnosis; experiences relating to PA; motivators and facilitators to support PA engagement and the suitability for people with RA of evidence based PA programmes designed for other long-term conditions. Results Study participants (15 female, 4 male; 59.9 (standard deviation (SD) 10.3) years) had a mean time (SD) since diagnosis of 44 (34) months. Data analysis yielded 4 key themes relating to PA programmes: (1) why people join and why they drop out; (2) venue and timing; (3) what people want to do and hear; and (4) who should deliver programmes and how. Conclusion Patients with RA are interested in PA programmes 6 to 12 months after diagnosis, which support safe exercise and provide expert physiotherapist input. Recommendation by trusted health professionals and promotion of the benefits for ‘people like me’ would positively impact recruitment and retention. Key elements of the programme include proficient, safety-oriented exercise guidance, RA education, peer support, relaxation, coping strategies and self-set goals. Findings indicate that a group-based programme with a social aspect would support adherence

    Evaluating the quality of social work supervision in UK children's services: comparing self-report and independent observations

    Get PDF
    Understanding how different forms of supervision support good social work practice and improve outcomes for people who use services is nearly impossible without reliable and valid evaluative measures. Yet the question of how best to evaluate the quality of supervision in different contexts is a complicated and as-yet-unsolved challenge. In this study, we observed 12 social work supervisors in a simulated supervision session offering support and guidance to an actor playing the part of an inexperienced social worker facing a casework-related crisis. A team of researchers analyzed these sessions using a customized skills-based coding framework. In addition, 19 social workers completed a questionnaire about their supervision experiences as provided by the same 12 supervisors. According to the coding framework, the supervisors demonstrated relatively modest skill levels, and we found low correlations among different skills. In contrast, according to the questionnaire data, supervisors had relatively high skill levels, and we found high correlations among different skills. The findings imply that although self-report remains the simplest way to evaluate supervision quality, other approaches are possible and may provide a different perspective. However, developing a reliable independent measure of supervision quality remains a noteworthy challenge

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    • 

    corecore