6 research outputs found

    Quantum algorithms for algebraic problems

    Full text link
    Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article reviews the current state of quantum algorithms, focusing on algorithms with superpolynomial speedup over classical computation, and in particular, on problems with an algebraic flavor.Comment: 52 pages, 3 figures, to appear in Reviews of Modern Physic

    On graph isomorphism for restricted graph classes

    No full text
    Abstract. Graph isomorphism (GI) is one of the few remaining problems in NP whose complexity status couldn’t be solved by classifying it as being either NP-complete or solvable in P. Nevertheless, efficient (polynomial-time or even NC) algorithms for restricted versions of GI have been found over the last four decades. Depending on the graph class, the design and analysis of algorithms for GI use tools from various fields, such as combinatorics, algebra and logic. In this paper, we collect several complexity results on graph isomorphism testing and related algorithmic problems for restricted graph classes from the literature. Further, we provide some new complexity bounds (as well as easier proofs of some known results) and highlight some open questions.

    Petroleum

    No full text
    corecore