36 research outputs found
Loop-Generated Bounds on Changes to the Graviton Dispersion Relation
We identify the effective theory appropriate to the propagation of massless
bulk fields in brane-world scenarios, to show that the dominant low-energy
effect of asymmetric warping in the bulk is to modify the dispersion relation
of the effective 4-dimensional modes. We show how such changes to the graviton
dispersion relation may be bounded through the effects they imply, through
loops, for the propagation of standard model particles. We compute these bounds
and show that they provide, in some cases, the strongest constraints on
nonstandard gravitational dispersions. The bounds obtained in this way are the
strongest for the fewest extra dimensions and when the extra-dimensional Planck
mass is the smallest. Although the best bounds come for warped 5-D scenarios,
for which the 5D Planck Mass is O(TeV), even in 4 dimensions the graviton loop
can lead to a bound on the graviton speed which is comparable with other
constraints.Comment: 18 pages, LaTeX, 4 figures, uses revte
Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking
As part of a programme for the general study of the low-energy implications
of supersymmetry breaking in brane-world scenarios, we study the nonlinear
realization of supersymmetry which occurs when breaking N=2 to N=1
supergravity. We consider three explicit realizations of this supersymmetry
breaking pattern, which correspond to breaking by one brane, by one antibrane
or by two (or more) parallel branes. We derive the minimal field content, the
effective action and supersymmetry transformation rules for the resulting N=1
theory perturbatively in powers of kappa = 1/M_{Planck}. We show that the way
the massive gravitino and spin-1 fields assemble into N=1 multiplets implies
the existence of direct brane-brane contact interactions at order O(kappa).
This result is contrary to the O(kappa^2) predicted by the sequestering
scenario but in agreement with recent work of Anisimov et al. Our low-energy
approach is model independent and is a first step towards determining the
low-energy implications of more realistic brane models which completely break
all supersymmetries.Comment: Latex, 29 Page
Dynamic Community Detection into Analyzing of Wildfires Events
The study and comprehension of complex systems are crucial intellectual and
scientific challenges of the 21st century. In this scenario, network science
has emerged as a mathematical tool to support the study of such systems.
Examples include environmental processes such as wildfires, which are known for
their considerable impact on human life. However, there is a considerable lack
of studies of wildfire from a network science perspective. Here, employing the
chronological network concept -- a temporal network where nodes are linked if
two consecutive events occur between them -- we investigate the information
that dynamic community structures reveal about the wildfires' dynamics.
Particularly, we explore a two-phase dynamic community detection approach,
i.e., we applied the Louvain algorithm on a series of snapshots. Then we used
the Jaccard similarity coefficient to match communities across adjacent
snapshots. Experiments with the MODIS dataset of fire events in the Amazon
basing were conducted. Our results show that the dynamic communities can reveal
wildfire patterns observed throughout the year.Comment: 16 pages, 8 figure
Recommended from our members
Viewing forests through the lens of complex systems science
Complex systems science provides a transdisciplinary framework to study systems characterized by (1) heterogeneity, (2) hierarchy, (3) selfâorganization, (4) openness, (5) adaptation, (6) memory, (7) nonâlinearity, and (8) uncertainty. Complex systems thinking has inspired both theory and applied strategies for improving ecosystem resilience and adaptability, but applications in forest ecology and management are just beginning to emerge. We review the properties of complex systems using four wellâstudied forest biomes (temperate, boreal, tropical and Mediterranean) as examples. The lens of complex systems science yields insights into facets of forest structure and dynamics that facilitate comparisons among ecosystems. These biomes share the main properties of complex systems but differ in specific ecological properties, disturbance regimes, and human uses. We show how this approach can help forest scientists and managers to conceptualize forests as integrated socialâecological systems and provide concrete examples of how to manage forests as complex adaptive systems
Analysis of ecological thresholds in a temperate forest undergoing dieback.
Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech). Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3-5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do not pass critical thresholds
The effect of positive interactions on community structure in a multi-species metacommunity model along an environmental gradient
Positive interactions are widely recognized as playing a major role in the organization of community structure and diversity. As such, recent theoretical and empirical works have revealed the significant contribution of positive interactions in shaping speciesâ geographical distributions, particularly in harsh abiotic conditions. In this report, we explore the joint influence of local dispersal and an environmental gradient on the spatial distribution, structure and function of communities containing positive interactions. While most previous theoretical efforts were limited to modelling the dynamics of single pairs of associated species being mutualist or competitor, here we employ a spatially explicit multi-species metacommunity model covering a rich range of interspecific interactions (mutualism, competition and exploitation) along an environmental gradient. We find that mutualistic interactions dominate in communities with low diversity characterized by limited species dispersal and poor habitat quality. On the other hand, the fraction of mutualistic interactions decreases at the expense of exploitation and competition with the increase in diversity caused by higher dispersal and/or habitat quality. Our multi-species model exemplifies the ubiquitous presence of mutualistic interactions and the role of mutualistic species as facilitators for the further establishment of species during ecosystem assembly. We therefore argue that mutualism is an essential component driving the origination of complex and diverse communities
Positive interactions and the emergence of community structure in metacommunities
The significant role of space in maintaining species coexistence and determining community structure and function is well established. However, community ecology studies have mainly focused on simple competition and predation systems, and the relative impact of positive interspecific interactions in shaping communities in a spatial context is not well understood. Here we employ a spatially explicit metacommunity model to investigate the effect of local dispersal on the structure and function of communities in which species are linked through an interaction web comprising mutualism, competition and exploitation. Our results show that function, diversity and interspecific interactions of locally linked communities undergo a phase transition with changes in the rate of species dispersal. We find that low spatial interconnectedness favors the spontaneous emergence of strongly mutualistic communities which are more stable but less productive and diverse. On the other hand, high spatial interconnectedness promotes local biodiversity at the expense of local stability and supports communities with a wide range of interspecific interactions. We argue that investigations of the
relationship between spatial processes and the self-organization of complex interaction webs are critical to understanding the geographic structure of interactions in real landscapes
Maximizing conservation and production with intensive forest management: Itâs all about location
Functional zoning has been suggested as a way to balance the needs of a viable forest industry with those of healthy ecosystems. Under this system, part of the forest is set aside for protected areas, counterbalanced by intensive and extensive management of the rest of the forest. Studies indicate this may provide adequate timber while minimizing road construction and favoring the development of large mature and old stands. However, it is unclear how the spatial arrangement of intensive management areas may affect the success of this zoning. Should these areas be agglomerated or dispersed throughout the forest landscape? Should managers prioritize (a) proximity to existing roads, (b) distance from protected areas, or (c) site specific productivity? We use a spatially explicit landscape simulation model to examine the effects of different spatial scenarios on landscape structure, connectivity for native forest wildlife, stand diversity, harvest volume, and road construction: (1) random placement of intensive management areas, and (2â8) all possible combinations of rules
(a)â(c). Results favor the agglomeration of intensive management areas. For most wildlife species, connectivity was the highest when intensive management was far from the protected areas. This scenario also resulted in relatively high harvest volumes. Maximizing distance of intensive management areas from protected areas may therefore be the best way to maximize the benefits of intensive management areas while minimizing their potentially negative effects on forest structure and biodiversity