4 research outputs found

    Catalytic (de)hydrogenation promoted by non-precious metals-Co, Fe and Mn:recent advances in an emerging field

    No full text
    \u3cp\u3eCatalytic hydrogenation and dehydrogenation reactions form the core of the modern chemical industry. This vast class of reactions is found in any part of chemical synthesis starting from the milligram-scale exploratory organic chemistry to the multi-ton base chemicals production. Noble metal catalysis has long been the key driving force in enabling these transformations with carbonyl substrates and their nitrogen-containing counterparts. This review is aimed at introducing the reader to the remarkable progress made in the last three years in the development of base metal catalysts for hydrogenations and dehydrogenative transformations.\u3c/p\u3

    Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen

    Get PDF
    A simple amphiphilic surfactant containing a mono-quaternary ammonium head group (N-methylpiperidine) is effective in imparting substantial mesoporosity during synthesis of SSZ-13 and ZSM-5 zeolites. Highly mesoporous SSZ-13 prepared in this manner shows greatly improved catalytic performance in the methanol-to-olefins reaction compared to bulk SSZ-13

    Tracking local mechanical impact in heterogeneous polymers with direct optical imaging

    No full text
    \u3cp\u3eStructural heterogeneity defines the properties of many functional polymers and it is often crucial for their performance and ability to withstand mechanical impact. Such heterogeneity, however, poses a tremendous challenge for characterization of these materials and limits our ability to design them rationally. Herein we present a practical methodology capable of resolving the complex mechanical behavior and tracking mechanical impact in discrete phases of segmented polyurethane—a typical example of a structurally complex polymer. Using direct optical imaging of photoluminescence produced by a small-molecule organometallic mechano-responsive sensor we observe in real time how polymer phases dissipate energy, restructure, and breakdown upon mechanical impact. Owing to its simplicity and robustness, this method has potential in describing the evolution of complex soft-matter systems for which global characterization techniques fall short of providing molecular-level insight.\u3c/p\u3
    corecore