3 research outputs found

    Lessons learned and paths forward for rabies dog vaccination in Madagascar: a case study of pilot vaccination campaigns in Moramanga District

    Get PDF
    Canine rabies causes an estimated 60,000 human deaths per year, but these deaths are preventable through post-exposure prophylaxis of people and vaccination of domestic dogs. Dog vaccination campaigns targeting 70% of the population are effective at interrupting transmission. Here, we report on lessons learned during pilot dog vaccination campaigns in the Moramanga District of Madagascar. We compare two different vaccination strategies: a volunteer-driven effort to vaccinate dogs in two communes using static point vaccination and continuous vaccination as part of routine veterinary services. We used dog age data from the campaigns to estimate key demographic parameters and to simulate different vaccination strategies. Overall, we found that dog vaccination was feasible and that most dogs were accessible to vaccination. The static-point campaign achieved higher coverage but required more resources and had a limited geographic scope compared to the continuous delivery campaign. Our modeling results suggest that targeting puppies through community-based vaccination efforts could improve coverage. We found that mass dog vaccination is feasible and can achieve high coverage in Madagascar; however, context-specific strategies and an investment in dog vaccination as a public good will be required to move the country towards elimination

    What drives seed dispersal effectiveness?

    No full text
    Abstract Seed dispersal is a critical phase in plant reproduction and forest regeneration. In many systems, the vast majority of woody species rely on seed dispersal by fruitā€eating animals. Animals differ in their size, movement patterns, seed handling, gut physiology, and many other factors that affect the number of seeds they disperse, the quality of treatment each individual seed receives, and consequently their relative contribution to plant fitness. The seed dispersal effectiveness framework (SDE) was developed to allow systematic and standardized quantification of these processes, offering a potential for understanding the largeā€scale dynamics of animalā€“plant interactions and the ecological and evolutionary consequences of animal behavior for plant reproductive success. Yet, despite its wide acceptance, the SDE framework has primarily been employed descriptively, almost always in the context of local systems. As such, the drivers of variation in SDE across systems and the relationship between its components remain unknown. We systematically searched studies that quantified endozoochorous SDE for multiple animal species dispersing one or more plant species in a given system and offered an integrative examination of the factors driving variation in SDE. Specifically, we addressed three main questions: (a) Is there a tradeoff between high dispersal quality and quantity? (b) Does animal body mass affect SDE or its main components? and (c) What drives more variation in SDE, seed dispersal quality, or quantity? We found that: (a) the relationship between quality and quantity is mediated by body size; (b) this is the result of differential relationships between body mass and the two components, while total SDE is unaffected by body mass; (c)neither quality nor quantity explain more variance in SDE globally. Our results also highlight the need for more standardized data to assess largeā€scale patterns in SDE

    Madagascar Terrestrial Camera Survey Database 2021: A collation of protected forest camera surveys from 2007ā€“2021

    No full text
    Madagascar is a threatened global biodiversity hotspot and conservation priority, yet we lack broad-scale surveys to assess biodiversity across space and time. To fill this gap, we collated camera trap surveys, capturing species occurrences within Madagascar into a single standardized database. This data set includes nine distinct protected areas of Madagascar and encompasses 13 subprojects, 38 camera arrays, and 1156 sampling units (independent camera site per survey) within two important biodiversity eco-regions: western dry deciduous forest and eastern humid rainforest. Camera surveys were conducted from June 2007 to January 2021. The final data set includes 17 unique families of mammals (Bovidae, Canidae, Cheirogaleidae, Daubentoniidae, Equidae, Eupleridae, Felidae, Hominidae, Indriidae, Lemuridae, Lepilemuridae, Muridae, Nesomyidae, Pteropodidae, Soricidae, Suidae, Tenrecidae) comprising 45 species and 27 unique families of birds (Accipitridae, Acrocephalidae, Alcedinidae, Bernieridae, Brachypteraciidae, Caprimulgidae, Cisticolidae, Columbidae, Coraciidae, Corvidae, Cuculidae, Dicruridae, Mesitornithidae, Monarchidae, Motacillidae, Muscicapidae, Numididae, Phasianidae, Rallidae, Sarothruridae, Strigidae, Sturnidae, Sulidae, Threskiornithidae, Upupidae, Vangidae, Zosteropidae) comprising 58 species. Images were processed and verified by individual project data set creators and camera operation and species tables were then collated. The final product represents the first broad-scale freely available standardized formal faunal database for Madagascar. Data are available through this publication and at DOI: 10.5281/zenodo.5801806. These data will be useful for examining species-level and community-level trends in occurrence across space or time within Madagascar and globally, evaluating native and invasive species dynamics, and will aid in determining species conservation status and planning for at-risk species. There are no copyright restrictions; please cite this paper when using the data for publication
    corecore