87 research outputs found

    Tracing the bounds on Bell-type inequalities

    Full text link
    Bell-type inequalities and violations thereof reveal the fundamental differences between standard probability theory and its quantum counterpart. In the course of previous investigations ultimate bounds on quantum mechanical violations have been found. For example, Tsirelson's bound constitutes a global upper limit for quantum violations of the Clauser-Horne-Shimony-Holt (CHSH) and the Clauser-Horne (CH) inequalities. Here we investigate a method for calculating the precise quantum bounds on arbitrary Bell-type inequalities by solving the eigenvalue problem for the operator associated with each Bell-type inequality. Thereby, we use the min-max principle to calculate the norm of these self-adjoint operators from the maximal eigenvalue yielding the upper bound for a particular set of measurement parameters. The eigenvectors corresponding to the maximal eigenvalues provide the quantum state for which a Bell-type inequality is maximally violated.Comment: presented at: Foundations of Probability and Physics-3, Vaexjoe University, Sweden, June 7-12, 200

    Non-cyclic Geometric Phase due to Spatial Evolution in a Neutron Interferometer

    Full text link
    We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported previously by Hasegawa et al. [Phys. Rev. A 53, 2486 (1996)] to verify the cyclic spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this particular state evolution, has met severe criticism from Wagh [Phys. Rev. A 59, 1715 (1999)]. The extension to a non-cyclic evolution manifests the correctness of the interpretation of the previous experiment by means of an explicit calculation of the non-cyclic geometric phase in terms of paths on the Bloch-sphere.Comment: 4 pages, revtex

    Measurement of a Vacuum-Induced Geometric Phase

    Full text link
    Berry's geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling between the system and the external field can also give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. Here we demonstrate the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity systems also in the context of quantum information processing.Comment: 5 + 6 page
    • …
    corecore