7 research outputs found
GRBAlpha: the smallest astrophysical space observatory -- Part 1: Detector design, system description and satellite operations
Aims. Since launched on 2021 March 22, the 1U-sized CubeSat GRBAlpha operates
and collects scientific data on high-energy transients, making it the smallest
astrophysical space observatory to date. GRBAlpha is an in-obit demonstration
of a gamma-ray burst (GRB) detector concept suitably small to fit into a
standard 1U volume. As it was demonstrated in a companion paper, GRBAlpha adds
significant value to the scientific community with accurate characterization of
bright GRBs, including the recent outstanding event of GRB 221009A. Methods.
The GRB detector is a 75x75x5 mm CsI(Tl) scintillator wrapped in a reflective
foil (ESR) read out by an array of SiPM detectors, multi-pixel photon counters
by Hamamatsu, driven by two separate, redundant units. To further protect the
scintillator block from sunlight and protect the SiPM detectors from particle
radiation, we apply a multi-layer structure of Tedlar wrapping, anodized
aluminium casing and a lead-alloy shielding on one edge of the assembly. The
setup allows observations of gamma radiation within the energy range of 70-890
keV with an energy resolution of ~30%. Results. Here, we summarize the system
design of the GRBAlpha mission, including the electronics and software
components of the detector, some aspects of the platform as well as the current
way of semi-autonomous operations. In addition, details are given about the raw
data products and telemetry in order to encourage the community for expansion
of the receiver network for our initiatives with GRBAlpha and related
experiments.Comment: Accepted for publication in Astronomy & Astrophysics, 9 pages, 10
figure
La simulation électronique de CELESTE : étude des biais et application à l'obsevation de la Nébuleuse de Crabe
High energy astrophysics deals with the extreme processes of the Universe linked with the production of energetic particles (cosmic rays). The search of the sites of its acceleration led to the birth of a gamma ray astronomy. Inside our Galaxy, supernova remnants and pulsars attract most attention. Active galactic nuclei, especialy its blazar category, represent the dominant group of sources at cosmological distances. Using Cerenkov technique ground-based observatories can detect gamma rays of GeV energies that are absorbed in the atmosphere after developing into an electromagnetic cascade. CELESTE project succeeded in lowering of the energy threshold to 30 GeV using a large collecting area of a former solar power plant Thémis (French Pyrenées). Study of the key elements of its implementation - the hybrid analog-logical trigger and high frequency sampling of the signal recorded for multiple places of the field - represent the essential part of this thesis. The code developed for the simulation of the electronic part of the experiment was thoroughly tested in the comparaison with real measurements. The uncertainties of the amplitude calibration and trigger timing translate into errors of energy threshold and effective area determinations. The possible sources of bias are studied at several points of the simulation chain. These considerations are applied to the results of Crab Nebula observations, first source detected by CELESTE in 2000.Cette thèse présente le domaine de l'astronomie gamma et les principales sources de notre Galaxie (pulsars et SNRs) et celles situées à des distances cosmologiques (noyaux actifs de galaxie). La technique Cerenkov permet aux observatoires au sol de détecter des rayons gamma d'énergie du GeV absorbés dans l'atmosphère après avoir développé une cascade électromagnétique. Le projet CELESTE a atteint le but d'un seuil bas de 30 GeV, utilisant une grande surface de collection de l'ancienne centrale solaire de Thémis (Pyrénées Orientales). Une étude des principaux éléments du dispositif - un système de déclenchement mixte analogique-digital et un échantillonnage à haute fréquence du signal enregistré en plusieurs points du champ - représente la partie essentielle de cette thèse. Le code développé pour la simulation de la chaîne électronique de l'expérience a été vérifié profondément en faisant des comparaisonsavec les données réelles. L'incertitude de la calibration en amplitude et de la mise-en-temps pour le déclenchement se traduit en erreurs sur la détermination du seuil en énergie et la surface effective. Les sources des biais éventuels sont étudiées (sur les différents points de la chaîne de simulation). Ces considérations sont appliquées aux observations de la Nébuleuse de Crabe, détectée par CELESTE déjà en 2000
La simulation électronique de Celeste (étude des biais et application à l'observation de la Nébuleuse du Crabe)
STRASBOURG-Bib.Central Recherche (674822133) / SudocPARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
Controlling the plasmonic properties of titanium nitride thin films by radiofrequency substrate biasing in magnetron sputtering
Titanium nitride (TiN) is a promising plasmonic material alternative to gold and silver thanks to its refractory character, low resistivity (<100 mu Omega cm) and compatibility with microelectronic industry processes. Extensive research is currently focusing on the development of magnetron sputtering as a large-scale technique to produce TiN thin films with low resistivity and optimized plasmonic performance. As such, more knowledge on the correlation between process parameters and the functional properties of TiN is needed. Here we report the effect of radiofrequency (RF) substrate biasing during the sputtering process on the structural, optical and electrical properties of TiN films. We employ spectroscopic ellipsometry as a sensible characterization method and we show that a moderate RF power, despite reducing the grain size, allows to achieve optimal plasmonic quality factors and a low resistivity (<100 mu Omega cm). This is attributed to the introduction of a slight under-stoichiometry in the material (i.e., TiN0.85), as opposite to the films synthesized without bias or under intense bombardment conditions. RF substrate biasing during magnetron sputtering appears thus as a viable tool to prepare TiN thin films at room temperature with desired plasmonic properties.Web of Science554art. no. 14954
Magneto-optické měření monovrstev molekulárních nanomagnetů
We report field-dependent magnetization measurements on monolayers of [Dy(Pc)2] on quartz, prepared by the Langmuir–Blodgett technique. The films are thoroughly characterized by means of X-ray reflectivity and atomic force microscopy. The magnetisation of the sample is measured through the magnetic circular dichroism of a ligand-based electronic transition.V práci ukazujeme , že jsme dosáhli citlivosti jedné monovrstvy molekulárních magnetů DyPc2 pomocí magnetického cirkulárního dichroizmu
GRBAlpha: The smallest astrophysical space observatory
Aims. Since it launched on 22 March 2021, the 1U-sized CubeSat GRBAlpha operates and collects scientific data on high-energy transients, making it the smallest astrophysical space observatory to date. GRBAlpha is an in-orbit demonstration of a gamma-ray burst (GRB) detector concept suitably small to fit into a standard 1U volume. As was demonstrated in a companion paper, GRBAlpha adds significant value to the scientific community with accurate characterization of bright GRBs, including the recent outstanding event of GRB 221009A.
Methods. The GRB detector is a 75 × 75 × 5 mm CsI(Tl) scintillator wrapped in a reflective foil (ESR) read out by an array of SiPM detectors, multi-pixel photon counters by Hamamatsu, driven by two separate redundant units. To further protect the scintillator block from sunlight and protect the SiPM detectors from particle radiation, we applied a multi-layer structure of Tedlar wrapping, anodized aluminium casing, and a lead-alloy shielding on one edge of the assembly. The setup allows observations of gamma radiation within the energy range of 70–890 keV with an energy resolution of ~30%.
Results. Here, we summarize the system design of the GRBAlpha mission, including the electronics and software components of the detector, some aspects of the platform, and the current semi-autonomous operations. In addition, details are given about the raw data products and telemetry in order to encourage the community to expand the receiver network for our initiatives with GRBAlpha and related experiments