130 research outputs found

    Liraglutide-Induced Weight Loss May be Affected by Autonomic Regulation in Type 1 Diabetes

    Get PDF
    The role of the autonomic nervous system in the efficacy of glucagon-like peptide-1 receptor agonists (GLP-1 RA) in patients with type 1 diabetes is unknown. We assessed the association between autonomic function and weight loss induced by the GLP-1 RA liraglutide.Methods: Lira-1 was a randomized, double-blind, placebo-controlled trial assessing the efficacy and safety of 1.8 mg liraglutide once-daily for 24 weeks in overweight patients with type 1 diabetes. Autonomic function was assessed by heart rate response to deep breathing (E/I ratio), to standing (30/15 ratio), to the Valsalva maneuver and resting heart rate variability (HRV) indices. Associations between baseline the cardiovascular autonomic neuropathy (CAN) diagnosis (> 1 pathological non-resting test) and levels of test outcomes on liraglutide-induced weight loss was assessed by linear regression models.Results: Ninety-nine patients with mean age 48 (SD 12) years, HbA1c 70 (IQR 66;75) mmol/mol and BMI of 30 (SD 3) kg/m2 were assigned to liraglutide (N = 50) or placebo (N = 49). The CAN diagnosis was not associated with weight loss. A 50% higher baseline level of the 30/15 ratio was associated with a larger weight reduction by liraglutide of −2.65 kg during the trial (95% CI: −4.60; −0.69; P = 0.009). Similar significant associations were found for several HRV indices.Conclusions: The overall CAN diagnosis was not associated with liraglutide-induced weight loss in overweight patients with type 1 diabetes. Assessed separately, better outcomes for several CAN measures were associated with higher weight loss, indicating that autonomic involvement in liraglutide-induced weight loss may exist

    Study protocol for a multicentre, randomised, parallel group, sham-controlled clinical trial investigating the effect of transcutaneous vagal nerve stimulation on gastrointestinal symptoms in people with diabetes complicated with diabetic autonomic neuropathy:The DAN-VNS Study

    Get PDF
    Introduction A high proportion of people with diabetes experience gastrointestinal (GI) symptoms, which may be manifestations of diabetic autonomic neuropathy (DAN). The current treatment regime is ineffective and associated with major side effects. Transcutaneous vagal nerve stimulation (tVNS) is a new therapeutic option, which has been shown to increase GI motility and reduce inflammatory responses. As vagus is the main neuronal pathway for extrinsic coordination of GI secretion and motility, we hypothesise that tVNS will improve DAN-induced GI symptoms in subjects with diabetes.Methods and analysis The DAN-VNS study is a randomised multicentre clinical trial investigating the effect of short-term, high intensity as well as long-term, medium-intensity tVNS on GI symptom alleviation in 120 subjects with diabetes. The primary outcome consists of changes from baseline in subjective ratings of symptom severity. Secondary outcomes include changes in gastric motility and GI transit time measured by MRI and wireless motility capsule. Moreover, cardiovascular and sudomotor function, glycaemic control, brain sensory processing and presence of low-grade inflammation will be investigated as secondary outcome measures. Lastly, 15 responders of tVNS treatment will be included in an explorative, randomised, cross-over study, in which the acute endocrine and metabolic response to short-term tVNS will be investigated.Ethics and dissemination The study has been approved by the North Denmark Region Committee on Health Research Ethics (N-20190020). Results will be published in relevant international peer-reviewed journals.Trial registration number NCT04143269

    Comparing olive oil and C4-dietary oil, a prodrug for the GPR119 agonist, 2-oleoyl glycerol, less energy intake of the latter is needed to stimulate incretin hormone secretion in overweight subjects with type 2 diabetes

    Get PDF
    Abstract Background/objective After digestion, dietary triacylglycerol stimulates incretin release in humans, mainly through generation of 2-monoacylglycerol, an agonist for the intestinal G protein-coupled receptor 119 (GPR119). Enhanced incretin release may have beneficial metabolic effects. However, dietary fat may promote weight gain and should therefore be restricted in obesity. We designed C4-dietary oil (1,3-di-butyryl-2-oleoyl glycerol) as a 2-oleoyl glycerol (2-OG)-generating fat type, which would stimulate incretin release to the same extent while providing less calories than equimolar amounts of common triglycerides, e.g., olive oil. Subjects and methods We studied the effect over 180 min of (a) 19 g olive oil plus 200 g carrot, (b) 10.7 g C4 dietary oil plus 200 g carrot and (c) 200 g carrot, respectively, on plasma responses of gut and pancreatic hormones in 13 overweight patients with type 2 diabetes (T2D). Theoretically, both oil meals result in formation of 7.7 g 2-OG during digestion. Results Both olive oil and C4-dietary oil resulted in greater postprandial (P ≤ 0.01) glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses (incremental area under curve (iAUC)): iAUCGLP−1: 645 ± 194 and 702 ± 97 pM × min; iAUCGIP: 4,338 ± 764 and 2,894 ± 601 pM × min) compared to the carrot meal (iAUCGLP−1: 7 ± 103 pM × min; iAUCGIP: 266 ± 234 pM × min). iAUC for GLP-1 and GIP were similar for C4-dietary oil and olive oil, although olive oil resulted in a higher peak value for GIP than C4-dietary oil. Conclusion C4-dietary oil enhanced secretion of GLP-1 and GIP to almost the same extent as olive oil, in spite of liberation of both 2-OG and oleic acid, which also may stimulate incretin secretion, from olive oil. Thus, C4-dietary oil is more effective as incretin releaser than olive oil per unit of energy and may be useful for dietary intervention

    Near-normalization of glycaemic control with glucagon-like peptide-1 receptor agonist treatment combined with exercise in patients with type 2 diabetes

    Get PDF
    AIMS: To investigate the effects of exercise in combination with a glucagon‐like peptide‐1 receptor agonist (GLP‐1RA), liraglutide, or placebo for the treatment of type 2 diabetes. METHODS: Thirty‐three overweight, dysregulated and sedentary patients with type 2 diabetes were randomly allocated to 16 weeks of either exercise and liraglutide or exercise and placebo. Both groups had three supervised 60‐minute training sessions per week including spinning and resistance training. RESULTS: Glycated haemoglobin (HbA1c) levels dropped by a mean ± standard deviation of 2.0% ± 1.2% (from 8.2% ± 1.4%) in the exercise plus liraglutide group vs 0.3% ± 0.9% (from 8.0% ± 1.2%) in the exercise plus placebo group ( P < .001), and body weight was reduced more with liraglutide (−3.4 ± 2.9 kg vs −1.6 ± 2.3 kg; P < .001). Compared with baseline, similar reductions were seen in body fat (exercise plus liraglutide: −2.5% ± 1.4% [ P < .001]; exercise plus placebo: −2.2% ± 1.9% [ P < .001]) and similar increases were observed in maximum oxygen uptake (exercise plus liraglutide: 0.5 ± 0.5 L O(2)/min [ P < .001]; exercise plus placebo: 0.4 ± 0.4 L O(2)/min [ P = .002]). Greater reductions in fasting plasma glucose (−3.4 ± 2.3 mM vs −0.3 ± 2.6 mM, P < .001) and systolic blood pressure (−5.4 ± 7.4 mm Hg vs −0.6 ± 11.1 mm Hg, P < .01) were seen with exercise plus liraglutide vs exercise plus placebo. The two groups experienced similar increases in quality of life during the intervention. CONCLUSIONS: In obese patients with type 2 diabetes, exercise combined with GLP‐1RA treatment near‐normalized HbA1c levels and caused a robust weight loss when compared with placebo. These results suggest that a combination of exercise and GLP‐1RA treatment is effective in type 2 diabetes
    corecore