167 research outputs found
Antenna using a magnetic-slab located in the principal magnetic-field region beneath the patch
This paper presents an analysis of microstrip patch antennas with different dielec-tric/magnetic substrate profiles in an attempt to obtain operating frequency reduction. Initially, different ridge shapes in the substrate were examined. An in-depth investigation of the ridge shape and its dimensions on the antenna performance has been carried out. Subsequently an antenna with a magnetic-slab loaded in the prime magnetic-field region beneath the patch is proposed. The new magnetic loaded antenna design is aimed to reduce the resonant frequency of a conventional patch and reduce the profile of an earlier design with a substrate ridge. Various magnetic materials have been embedded within the original dielectric substrate of the patch antenna. Measured results validated the hypothesis that this frequency can be reduced by placing magnetic materials at the centre of the patch. The achieved gain is expected to be further enhanced by using forthcoming magnetic materials with improved performance
Temperature-dependent twist of double-stranded RNA probed by magnetic tweezer experiments and molecular dynamics simulations
RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = −14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = −11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA–RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure
Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations
RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = −14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = −11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA-RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure
The impact of spatial temporal averaging on the dynamic statistical properties of rain fields
Knowledge of the spatial-temporal variation of rain fields is required for the planning and optimization of wide area high frequency terrestrial and satellite communication networks. This paper presents data and a method for characterizing multi-resolutions statistical/dynamic parameters describing the spatial-temporal variation of rain fields across ocean climate in North- Western Europe. The data is derived from the NIMROD network of rain radars. The characterizing parameters include: (i) statistical distribution of point one-minute rainfall rates, (ii) spatial and temporal correlation function of rainfall rate and, (iii) the probability of rain/no-rain. The main contributions of this paper are the assessment of the impact of varying spatial and temporal integration lengths on these parameters, their dependencies on the integration volumes and area sizes, and the model for both temporal and spatial correlation parameters
- …