52 research outputs found
Symmetric Operation of the Resonant Exchange Qubit
We operate a resonant exchange qubit in a highly symmetric triple-dot
configuration using IQ-modulated RF pulses. At the resulting three-dimensional
sweet spot the qubit splitting is an order of magnitude less sensitive to all
relevant control voltages, compared to the conventional operating point, but we
observe no significant improvement in the quality of Rabi oscillations. For
weak driving this is consistent with Overhauser field fluctuations modulating
the qubit splitting. For strong driving we infer that effective voltage noise
modulates the coupling strength between RF drive and the qubit, thereby
quickening Rabi decay. Application of CPMG dynamical decoupling sequences
consisting of up to n = 32 {\pi} pulses significantly prolongs qubit coherence,
leading to marginally longer dephasing times in the symmetric configuration.
This is consistent with dynamical decoupling from low frequency noise, but
quantitatively cannot be explained by effective gate voltage noise and
Overhauser field fluctuations alone. Our results inform recent strategies for
the utilization of partial sweet spots in the operation and long-distance
coupling of triple-dot qubits.Comment: 6 pages, 5 figure
Negative spin exchange in a multielectron quantum dot
By operating a one-electron quantum dot (fabricated between a multielectron
dot and a one-electron reference dot) as a spectroscopic probe, we study the
spin properties of a gate-controlled multielectron GaAs quantum dot at the
transition between odd and even occupation number. We observe that the
multielectron groundstate transitions from spin-1/2-like to singlet-like to
triplet-like as we increase the detuning towards the next higher charge state.
The sign reversal in the inferred exchange energy persists at zero magnetic
field, and the exchange strength is tunable by gate voltages and in-plane
magnetic fields. Complementing spin leakage spectroscopy data, the inspection
of coherent multielectron spin exchange oscillations provides further evidence
for the sign reversal and, inferentially, for the importance of non-trivial
multielectron spin exchange correlations.Comment: 8 pages, including 4 main figures and 2 supplementary figurure
Noise suppression using symmetric exchange gates in spin qubits
We demonstrate a substantial improvement in the spin-exchange gate using
symmetric control instead of conventional detuning in GaAs spin qubits, up to a
factor-of-six increase in the quality factor of the gate. For symmetric
operation, nanosecond voltage pulses are applied to the barrier that controls
the interdot potential between quantum dots, modulating the exchange
interaction while maintaining symmetry between the dots. Excellent agreement is
found with a model that separately includes electrical and nuclear noise
sources for both detuning and symmetric gating schemes. Unlike exchange control
via detuning, the decoherence of symmetric exchange rotations is dominated by
rotation-axis fluctuations due to nuclear field noise rather than direct
exchange noise.Comment: 5 pages main text (4 figures) plus 5 pages supplemental information
(3 figures
Spectrum of the Nuclear Environment for GaAs Spin Qubits
Using a singlet-triplet spin qubit as a sensitive spectrometer of the GaAs
nuclear spin bath, we demonstrate that the spectrum of Overhauser noise agrees
with a classical spin diffusion model over six orders of magnitude in
frequency, from 1 mHz to 1 kHz, is flat below 10 mHz, and falls as for
frequency Hz. Increasing the applied magnetic field from
0.1 T to 0.75 T suppresses electron-mediated spin diffusion, which decreases
spectral content in the region and lowers the saturation frequency,
each by an order of magnitude, consistent with a numerical model. Spectral
content at megahertz frequencies is accessed using dynamical decoupling, which
shows a crossover from the few-pulse regime ( -pulses),
where transverse Overhauser fluctuations dominate dephasing, to the many-pulse
regime ( -pulses), where longitudinal Overhauser
fluctuations with a spectrum dominate.Comment: 6 pages, 4 figures, 8 pages of supplementary material, 5
supplementary figure
Fast spin exchange between two distant quantum dots
The Heisenberg exchange interaction between neighboring quantum dots allows
precise voltage control over spin dynamics, due to the ability to precisely
control the overlap of orbital wavefunctions by gate electrodes. This allows
the study of fundamental electronic phenomena and finds applications in quantum
information processing. Although spin-based quantum circuits based on
short-range exchange interactions are possible, the development of scalable,
longer-range coupling schemes constitutes a critical challenge within the
spin-qubit community. Approaches based on capacitative coupling and
cavity-mediated interactions effectively couple spin qubits to the charge
degree of freedom, making them susceptible to electrically-induced decoherence.
The alternative is to extend the range of the Heisenberg exchange interaction
by means of a quantum mediator. Here, we show that a multielectron quantum dot
with 50-100 electrons serves as an excellent mediator, preserving speed and
coherence of the resulting spin-spin coupling while providing several
functionalities that are of practical importance. These include speed (mediated
two-qubit rates up to several gigahertz), distance (of order of a micrometer),
voltage control, possibility of sweet spot operation (reducing susceptibility
to charge noise), and reversal of the interaction sign (useful for dynamical
decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5
supplementary figure
Radio-frequency methods for Majorana-based quantum devices: fast charge sensing and phase diagram mapping
Radio-frequency (RF) reflectometry is implemented in hybrid
semiconductor-superconductor nanowire systems designed to probe Majorana zero
modes. Two approaches are presented. In the first, hybrid nanowire-based
devices are part of a resonant circuit, allowing conductance to be measured as
a function of several gate voltages ~40 times faster than using conventional
low-frequency lock-in methods. In the second, nanowire devices are capacitively
coupled to a nearby RF single-electron transistor made from a separate
nanowire, allowing RF detection of charge, including charge-only measurement of
the crossover from 2e inter-island charge transitions at zero magnetic field to
1e transitions at axial magnetic fields above 0.6 T, where a topological state
is expected. Single-electron sensing yields signal-to-noise exceeding 3 and
visibility 99.8% for a measurement time of 1 {\mu}s
Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron
We investigate the spin of a multielectron GaAs quantum dot in a sequence of
nine charge occupancies, by exchange coupling the multielectron dot to a
neighboring two-electron double quantum dot. For all nine occupancies, we make
use of a leakage spectroscopy technique to reconstruct the spectrum of spin
states in the vicinity of the interdot charge transition between a single- and
a multielectron quantum dot. In the same regime we also perform time-resolved
measurements of coherent exchange oscillations between the single- and
multielectron quantum dot. With these measurements, we identify distinct
characteristics of the multielectron spin state, depending on whether the dot's
occupancy is even or odd. For three out of four even occupancies we do not
observe any exchange interaction with the single quantum dot, indicating a
spin-0 ground state. For the one remaining even occupancy, we observe an
exchange interaction that we associate with a spin-1 multielectron quantum dot
ground state. For all five of the odd occupancies, we observe an exchange
interaction associated with a spin-1/2 ground state. For three of these odd
occupancies, we clearly demonstrate that the exchange interaction changes sign
in the vicinity of the charge transition. For one of these, the exchange
interaction is negative (i.e. triplet-preferring) beyond the interdot charge
transition, consistent with the observed spin-1 for the next (even) occupancy.
Our experimental results are interpreted through the use of a Hubbard model
involving two orbitals of the multielectron quantum dot. Allowing for the spin
correlation energy (i.e. including a term favoring Hund's rules) and different
tunnel coupling to different orbitals, we qualitatively reproduce the measured
exchange profiles for all occupancies.Comment: 20 pages, 13 figures, 2 table
- …