110 research outputs found

    Phase Transition in Strongly Degenerate Hydrogen Plasma

    Full text link
    Direct fermionic path-integral Monte-Carlo simulations of strongly coupled hydrogen are presented. Our results show evidence for the hypothetical plasma phase transition. Its most remarkable manifestation is the appearance of metallic droplets which are predicted to be crucial for the electrical conductivity allowing to explain the rapid increase observed in recent shock compression measurments.Comment: 1 LaTeX file using jetpl.cls (included), 5 ps figures. Manuscript submitted to JETP Letter

    Hole crystallization in semiconductors

    Full text link
    When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.Comment: accepted for publication in J. Phys. A: Math. Ge

    Thermodynamic Properties of Correlated Strongly Degenerate Plasmas

    Full text link
    An efficient numerical approach to equilibrium properties of strongly coupled systems which include a subsystem of fermionic quantum particles and a subsystem of classical particles is presented. It uses an improved path integral representation of the many-particle density operator and allows to describe situations of strong coupling and strong degeneracy, where analytical theories fail. A novel numerical method is developed, which allows to treat degenerate systems with full account of the spin scatistics. Numerical results for thermodynamic properties such as internal energy, pressure and pair correlation functions are presented over a wide range of degeneracy parameter.Comment: 8 pages, 4 figures, uses sprocl.sty (included) to be published in "Progress in Nonequilibrium Green's functions", M. Bonitz (Ed.), World Scientific 200

    Thermodynamic properties and electrical conductivity of strongly correlated plasma media

    Full text link
    We study thermodynamic properties and the electrical conductivity of dense hydrogen and deuterium using three methods: classical reactive Monte Carlo (REMC), direct path integral Monte Carlo (PIMC) and a quantum dynamics method in the Wigner representation of quantum mechanics. We report the calculation of the deuterium compression quasi-isentrope in good agreement with experiments. We also solve the Wigner-Liouville equation of dense degenerate hydrogen calculating the initial equilibrium state by the PIMC method. The obtained particle trajectories determine the momentum-momentum correlation functions and the electrical conductivity and are compared with available theories and simulations
    • …
    corecore