110 research outputs found

    Phase Transition in Strongly Degenerate Hydrogen Plasma

    Full text link
    Direct fermionic path-integral Monte-Carlo simulations of strongly coupled hydrogen are presented. Our results show evidence for the hypothetical plasma phase transition. Its most remarkable manifestation is the appearance of metallic droplets which are predicted to be crucial for the electrical conductivity allowing to explain the rapid increase observed in recent shock compression measurments.Comment: 1 LaTeX file using jetpl.cls (included), 5 ps figures. Manuscript submitted to JETP Letter

    Hole crystallization in semiconductors

    Full text link
    When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.Comment: accepted for publication in J. Phys. A: Math. Ge

    Influence of the nature of confinement on the melting of Wigner molecules in quantum dots

    Full text link
    We analyze the quantum melting of two-dimensional Wigner molecules (WM) in confined geometries with distinct symmetries and compare it with corresponding thermal melting. Our findings unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale nXn_X. This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows "melting" from the WM to both the classical and quantum "liquids." An intriguing signature of weakening liquidity with increasing temperature, TT, is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal "melting." Our study will help comprehending melting in a variety of experimental traps - from quantum dots to complex plasma.Comment: 14 pages, 9 figure

    Effective interaction potential and superfluid-solid transition of spatially indirect excitons

    Full text link
    Using an adiabatic approximation we derive an effective interaction potentially for spatially indirect excitons. Using this potential and path integral Monte Carlo simulations we study exciton crystllization and the quantum melting phase transition in a macroscopic system of 2D excitons. Furthermore, the superfluid fraction is calculated as a function of density and shown to vanish upon crystallization. We show that the commonly used dipole model fails to correctly describe indirect excitons in quantum well structures
    • …
    corecore