10 research outputs found

    On the concentration of large deviations for fat tailed distributions, with application to financial data

    Full text link
    Large deviations for fat tailed distributions, i.e. those that decay slower than exponential, are not only relatively likely, but they also occur in a rather peculiar way where a finite fraction of the whole sample deviation is concentrated on a single variable. The regime of large deviations is separated from the regime of typical fluctuations by a phase transition where the symmetry between the points in the sample is spontaneously broken. For stochastic processes with a fat tailed microscopic noise, this implies that while typical realizations are well described by a diffusion process with continuous sample paths, large deviation paths are typically discontinuous. For eigenvalues of random matrices with fat tailed distributed elements, a large deviation where the trace of the matrix is anomalously large concentrates on just a single eigenvalue, whereas in the thin tailed world the large deviation affects the whole distribution. These results find a natural application to finance. Since the price dynamics of financial stocks is characterized by fat tailed increments, large fluctuations of stock prices are expected to be realized by discrete jumps. Interestingly, we find that large excursions of prices are more likely realized by continuous drifts rather than by discontinuous jumps. Indeed, auto-correlations suppress the concentration of large deviations. Financial covariance matrices also exhibit an anomalously large eigenvalue, the market mode, as compared to the prediction of random matrix theory. We show that this is explained by a large deviation with excess covariance rather than by one with excess volatility.Comment: 38 pages, 12 figure

    Condensation transition in joint large deviations of linear statistics

    Get PDF
    Real space condensation is known to occur in stochastic models of mass transport in the regime in which the globally conserved mass density is greater than a critical value. It has been shown within models with factorised stationary states that the condensation can be understood in terms of sums of independent and identically distributed random variables: these exhibit condensation when they are conditioned to a large deviation of their sum. It is well understood that the condensation, whereby one of the random variables contributes a finite fraction to the sum, occurs only if the underlying probability distribution (modulo exponential) is heavy-tailed, i.e. decaying slower than exponential. Here we study a similar phenomenon in which condensation is exhibited for non-heavy-tailed distributions, provided random variables are additionally conditioned on a large deviation of certain linear statistics. We provide a detailed theoretical analysis explaining the phenomenon, which is supported by Monte Carlo simulations (for the case where the additional constraint is the sample variance) and demonstrated in several physical systems. Our results suggest that the condensation is a generic phenomenon that pertains to both typical and rare events.Comment: 30 pages, 4 figures (minor revision

    The grand canonical catastrophe as an instance of condensation of fluctuations

    No full text
    The so-called grand canonical catastrophe of the density fluctuations in the ideal Bose gas is shown to be a particular instance of the much more general phenomenon of condensation of fluctuations, taking place in a large system, in or out of equilibrium, when a single degree of freedom makes a macroscopic contribution to the fluctuations of an extensive quantity. The pathological character of the "catastrophe" is demystified by emphasizing the connection between experimental conditions and statistical ensembles, as demonstrated by the recent realization of photon condensation under grand canonical conditions.Comment: 6 pages, 1 figur

    Bibliography of Husserlian Studies in Italy

    No full text
    corecore