19 research outputs found

    G protein-coupled estrogen receptor in GtoPdb v.2023.1

    Get PDF
    The G protein-coupled estrogen receptor (GPER, nomenclature as agreed by the NC-IUPHAR Subcommittee on the G protein-coupled estrogen receptor [26]) was identified following observations of estrogen-evoked cyclic AMP signalling in breast cancer cells [2], which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 [6]. There are observations of both cell-surface and intracellular expression of the GPER receptor [29, 34]. Selective agonist/ antagonists for GPER have been characterized [26]. Antagonists of the nuclear estrogen receptor, such as fulvestrant [11], tamoxifen [29, 34] and raloxifene [25], as well as the flavonoid 'phytoestrogens' genistein and quercetin [18], are agonists of GPER. Reviews of GPER pharmacology have been published [26]. The roles of GPER in (patho)physiological systems throughout the body (cardiovascular, metabolic, endocrine, immune, reproductive) and in cancer have also been reviewed [26, 27, 20, 17, 9]. The GPER-selective agonist G-1 is currently in Phase I/II clinical trials for cancer (NCT04130516)

    G protein-coupled estrogen receptor in GtoPdb v.2021.3

    Get PDF
    The G protein-coupled estrogen receptor (GPER, nomenclature as agreed by the NC-IUPHAR Subcommittee on the G protein-coupled estrogen receptor [25]) was identified following observations of estrogen-evoked cyclic AMP signalling in breast cancer cells [2], which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 [6]. There are observations of both cell-surface and intracellular expression of the GPER receptor [28, 33]. Selective agonist/ antagonists for GPER have been characterized [25]. Antagonists of the nuclear estrogen receptor, such as fulvestrant [11], tamoxifen [28, 33] and raloxifene [24], as well as the flavonoid 'phytoestrogens' genistein and quercetin [17], are agonists of GPER. A complete review of GPER pharmacology has been published [25]. The roles of GPER in physiological systems throughout the body (cardiovascular, metabolic, endocrine, immune, reproductive) and in cancer have also been reviewed [25, 26, 19, 16, 9]. The GPER-selective agonist G-1 is currently in Phase I/II clinical trials for cancer (NCT04130516)

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Integrins β 1

    No full text
    corecore