12 research outputs found

    Dynamic Helicates Self-Assembly from Homo- and Heterotopic Dynamic Covalent Ligand Strands

    No full text
    The understanding and the application of reversible covalent reactions and coordination chemistry together with the proper design of the molecular frameworks, allow to achieve not only well-defined output architectures but also different grades of complex behavior. In this work, the dynamic nature of the helical systems offers an additional level of complexity by combining self-sorting on two levels: 1) the build-up of the ligand strand constituents from their components through dynamic covalent chemistry; 2) the assembly of the helicates from the ligands and the metal cations through dynamic metallo-supramolecular chemistry. The information encoded in the ligands constituent molecule was read differently (and accurately at the same time) by metal cations that varied in the coordination algorithms. It enabled the selective formation of a specific type of helicates from a wide library of helicates formed by the possible combination of subcomponents. Ligands containing dynamic tridentate and/or bidentate binding motifs in the same strand were studied to explore the helicates self-assembly with appropriate metal cations

    Synthesis and Spectroscopic Investigations of Schiff Base Ligand and Its Bimetallic Ag(I) Complex as DNA and BSA Binders

    No full text
    Generation of well-defined potential metallotherapeutics for cancer treatment, one of the most population-threatening diseases, is challenging and an active area of modern research in view of their unique properties and thus multiple possible pathways of action in cells. Specifically, Schiff base ligands were recognized as very promising building blocks for the construction of stable and active complexes of numerous geometries and topologies. Incorporation of Ag(I) ions allows for the formation of flat complexes with potential unoccupied coordination sites, thus giving rise to specific interactions between the metallotherapeutic and biomolecule of interest. Herein, we present the design, synthesis and characterization of new Schiff base ligand L and its Ag(I) bimetallic complex [Ag2L2]2+ with two planar moieties formed around the metal ions and connected through cyclohexane rings, confirmed by X-ray measurements. The compounds were described in context of their potential use as anticancer drugs through DNA and BSA binding pathways by several spectroscopic methods (CD, UV-Vis, fluorescence). We revealed that both, L and [Ag2L2]2+, interact with similar affinity with CT-DNA (Kb~106 M−1), while they differ in the type and strength of interactions with the model albumin–BSA. [Ag2L2]2+ binds BSA in both a dynamic and static manner with the Ksv = 8.8 × 104 M−1 in the Trp-134 and Trp-213 sites, whereas L interacts with BSA only dynamically (KSV = 2.4 × 104 M−1). This found further confirmation in the CD studies which revealed a reduction in α-helix content in the albumin of 16% in presence of [Ag2L2]2+

    New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies

    No full text
    The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV–Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt

    Spectroscopic and SEM evidences for G4-DNA binding by a synthetic alkyne-containing amino acid with anticancer activity

    No full text
    Herein, we present a spectroscopic (CD and UV) and SEM study of a phenylalanine derivative carrying a terminal alkyne moiety and indicated by us CF3IIIPhe, with particular attention to its interaction with Cu(II) cation and some biological macromolecules, aswell as a preliminary evaluation of its effect on cancerous cells. CD spectroscopy evidenced the ability of CF3IIIPhe to interact with tel26 and c-myc, two quadruplex DNA (G4 DNA) models explored in this study. Other CDandUV studies revealed the ability of the unnatural amino acid to form aggregates in aqueous solution, to bind Cu(II) cation, and to interact with bovine serum albumin (BSA). Cellular studies demonstrated CF3IIIPhe antiproliferative activity on PC3 cells. Its ability to bind telomeric DNA was verified with tel26 by CD investigation and SEM analysis, that revealed a noteworthy change in DNA morphology (mainly based on nanosphere structures) by CF3IIIPhe, confirming its G4-DNA binding ability already evidenced by spectroscopy

    New Artificial Biomimetic Enzyme Analogues Based on Iron(II/III) Schiff Base Complexes: An Effect of (Benz)imidazole Organic Moieties on Phenoxazinone Synthase and DNA Recognition ‡

    No full text
    Elucidation of the structure and function of biomolecules provides us knowledge that can be transferred into the generation of new materials and eventually applications in e.g., catalysis or bioassays. The main problems, however, concern the complexity of the natural systems and their limited availability, which necessitates utilization of simple biomimetic analogues that are, to a certain degree, similar in terms of structure and thus behaviour. We have, therefore, devised a small library of six tridentate N-heterocyclic coordinating agents (L1–L6), which, upon complexation, form two groups of artificial, monometallic non-heme iron species. Utilization of iron(III) chloride leads to the formation of the 1:1 (Fe:Ln) ‘open’ complexes, whereas iron(II) trifluoromethanosulfonate allows for the synthesis of 1:2 (M:Ln) ‘closed’ systems. The structural differences between the individual complexes are a result of the information encoded within the metallic centre and the chosen counterion, whereas the organic scaffold influences the observed properties. Indeed, the number and nature of the external hydrogen bond donors coming from the presence of (benz)imidazole moieties in the ligand framework are responsible for the observed biological behaviour in terms of mimicking phenoxazinone synthase activity and interaction with DNA

    CCDC 2016070: Experimental Crystal Structure Determination

    No full text
    Related Article: Antonio Santoro, Jan Holub, Marta A. Fik-Jaskółka, Ghislaine Vantomme, Jean-Marie Lehn|2020|Chem.-Eur.J.|26|15664|doi:10.1002/chem.20200349

    CCDC 2016071: Experimental Crystal Structure Determination

    No full text
    Related Article: Antonio Santoro, Jan Holub, Marta A. Fik-Jaskółka, Ghislaine Vantomme, Jean-Marie Lehn|2020|Chem.-Eur.J.|26|15664|doi:10.1002/chem.20200349

    CCDC 2016067: Experimental Crystal Structure Determination

    No full text
    Related Article: Antonio Santoro, Jan Holub, Marta A. Fik-Jaskółka, Ghislaine Vantomme, Jean-Marie Lehn|2020|Chem.-Eur.J.|26|15664|doi:10.1002/chem.20200349

    CCDC 2016073: Experimental Crystal Structure Determination

    No full text
    Related Article: Antonio Santoro, Jan Holub, Marta A. Fik-Jaskółka, Ghislaine Vantomme, Jean-Marie Lehn|2020|Chem.-Eur.J.|26|15664|doi:10.1002/chem.20200349

    CCDC 2016072: Experimental Crystal Structure Determination

    No full text
    Related Article: Antonio Santoro, Jan Holub, Marta A. Fik-Jaskółka, Ghislaine Vantomme, Jean-Marie Lehn|2020|Chem.-Eur.J.|26|15664|doi:10.1002/chem.20200349
    corecore