5,902 research outputs found
Supersymmetric Kaluza-Klein reductions of M-waves and MKK-monopoles
We investigate the Kaluza-Klein reductions to ten dimensions of the purely
gravitational half-BPS M-theory backgrounds: the M-wave and the Kaluza-Klein
monopole. We determine the moduli space of smooth (supersymmetric) Kaluza-Klein
reductions by classifying the freely-acting spacelike Killing vectors which
preserve some Killing spinor. As a consequence we find a wealth of new
supersymmetric IIA configurations involving composite and/or bound-state
configurations of waves, D0 and D6-branes, Kaluza-Klein monopoles in type IIA
and flux/nullbranes, and some other new configurations. Some new features
raised by the geometry of the Taub-NUT space are discussed, namely the
existence of reductions with no continuous moduli. We also propose an
interpretation of the flux 5-brane in terms of the local description (close to
the branes) of a bound state of D6-branes and ten-dimensional Kaluza-Klein
monopoles.Comment: 36 pages (v2: Reference added, "draft" mode disabled; v3: two
singular reductions discarded, appendix on spin structures added, references
updated
Penrose limits of Lie Branes and a Nappi--Witten braneworld
Departing from the observation that the Penrose limit of AdS_3 x S^3 is a
group contraction in the sense of Inonu and Wigner, we explore the relation
between the symmetric D-branes of AdS_3 x S^3 and those of its Penrose limit, a
six-dimensional symmetric plane wave analogous to the four-dimensional
Nappi--Witten spacetime. Both backgrounds are Lie groups admitting bi-invariant
lorentzian metrics and symmetric D-branes wrap their (twisted) conjugacy
classes. We determine the (twisted and untwisted) symmetric D-branes in the
plane wave background and we prove the existence of a space-filling D5-brane
and, separately, of a foliation by D3-branes with the geometry of the
Nappi--Witten spacetime which can be understood as the Penrose limit of the
AdS_2 x S^2 D3-brane in AdS_3 x S^3. Parenthetically we also derive a simple
criterion for a symmetric plane wave to be isometric to a lorentzian Lie group.
In particular we observe that the maximally supersymmetric plane wave in IIB
string theory is isometric to a lorentzian Lie group, whereas the one in
M-theory is not.Comment: 21 pages (v2: references added
Chandra Observations of ULIRGs: Extended Hot Gas Halos in Merging Galaxies
We study the properties of hot gaseous halos in 10 nearby ultraluminous IRAS
galaxies observed with the ACIS instrument on board Chandra. For all sample
galaxies, diffuse soft X-ray emissions are found within ~10 kpc of the central
region; their spectra are well fitted by a MEKAL model plus emission lines from
alpha-elements and other ions. The temperature of the hot gas is about 0.7 keV
and metallicity is about 1 solar. Outside the central region, extended hot
gaseous halos are found for nine out of the ten ULIRGs. Most spectra of these
extended halos can be fitted with a MEKAL model with a temperature of about 0.6
keV and a low metallicity (~ 0.1 solar). We discuss the implications of our
results on the origin of X-ray halos in elliptical galaxies and the feedback
processes associated with starbursts.Comment: 31 pages, 6 figuers, ApJ in press, accepted versio
Penrose limits, supergravity and brane dynamics
We investigate the Penrose limits of classical string and M-theory
backgrounds. We prove that the number of (super)symmetries of a supergravity
background never decreases in the limit. We classify all the possible Penrose
limits of AdS x S spacetimes and of supergravity brane solutions. We also
present the Penrose limits of various other solutions: intersecting branes,
supersymmetric black holes and strings in diverse dimensions, and cosmological
models. We explore the Penrose limit of an isometrically embedded spacetime and
find a generalisation to spaces with more than one time. Finally, we show that
the Penrose limit is a large tension limit for all branes including those with
fields of Born--Infeld type.Comment: 67 page
Parallelisable Heterotic Backgrounds
We classify the simply-connected supersymmetric parallelisable backgrounds of
heterotic supergravity. They are all given by parallelised Lie groups admitting
a bi-invariant lorentzian metric. We find examples preserving 4, 8, 10, 12, 14
and 16 of the 16 supersymmetries.Comment: 17 pages, AMSLaTe
Non-Gaussianity from Self-Ordering Scalar Fields
The Universe may harbor relics of the post-inflationary epoch in the form of
a network of self-ordered scalar fields. Such fossils, while consistent with
current cosmological data at trace levels, may leave too weak an imprint on the
cosmic microwave background and the large-scale distribution of matter to allow
for direct detection. The non-Gaussian statistics of the density perturbations
induced by these fields, however, permit a direct means to probe for these
relics. Here we calculate the bispectrum that arises in models of self-ordered
scalar fields. We find a compact analytic expression for the bispectrum,
evaluate it numerically, and provide a simple approximation that may be useful
for data analysis. The bispectrum is largest for triangles that are aligned
(have edges ) as opposed to the local-model
bispectrum, which peaks for squeezed triangles (), and
the equilateral bispectrum, which peaks at . We
estimate that this non-Gaussianity should be detectable by the Planck satellite
if the contribution from self-ordering scalar fields to primordial
perturbations is near the current upper limit.Comment: 11 pages, 1 figur
Design and fabrication of a long-life Stirling cycle cooler for space application. Phase 3: Prototype model
A second-generation, Stirling-cycle cryocooler (cryogenic refrigerator) for space applications, with a cooling capacity of 5 watts at 65 K, was recently completed. The refrigerator, called the Prototype Model, was designed with a goal of 5 year life with no degradation in cooling performance. The free displacer and free piston of the refrigerator are driven directly by moving-magnet linear motors with the moving elements supported by active magnetic bearings. The use of clearance seals and the absence of outgassing material in the working volume of the refrigerator enable long-life operation with no deterioration in performance. Fiber-optic sensors detect the radial position of the shafts and provide a control signal for the magnetic bearings. The frequency, phase, stroke, and offset of the compressor and expander are controlled by signals from precision linear position sensors (LVDTs). The vibration generated by the compressor and expander is cancelled by an active counter balance which also uses a moving-magnet linear motor and magnetic bearings. The driving signal for the counter balance is derived from the compressor and expander position sensors which have wide bandwidth for suppression of harmonic vibrations. The efficiency of the three active members, which operate in a resonant mode, is enhanced by a magnetic spring in the expander and by gas springs in the compressor and counterbalance. The cooling was achieved with a total motor input power of 139 watts. The magnetic-bearing stiffness was significantly increased from the first-generation cooler to accommodate shuttle launch vibrations
- …