2,958 research outputs found
Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: the role of alignment and orbital symmetry
We address the influence of the orbital symmetry and of the molecular
alignment with respect to the laser-field polarization on laser-induced
nonsequential double ionization of diatomic molecules, in the length and
velocity gauges. We work within the strong-field approximation and assume that
the second electron is dislodged by electron-impact ionization, and also
consider the classical limit of this model. We show that the electron-momentum
distributions exhibit interference maxima and minima due to the electron
emission at spatially separated centers. The interference patterns survive the
integration over the transverse momenta for a small range of alignment angles,
and are sharpest for parallel-aligned molecules. Due to the contributions of
transverse-momentum components, these patterns become less defined as the
alignment angle increases, until they disappear for perpendicular alignment.
This behavior influences the shapes and the peaks of the electron momentum
distributions.Comment: 12 pages, 7 figures; some discussions have been extended and some
figures slightly modifie
SOUND SOFTWARE: TOWARDS SOFTWARE REUSE IN AUDIO AND MUSIC RESEARCH
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
- …