299 research outputs found
Order to disorder transition in the XY-like quantum magnet Cs2CoCl4 induced by noncommuting applied fields
We explore the effects of noncommuting applied fields on the ground-state
ordering of the quasi-one-dimensional spin-1/2 XY-like antiferromagnet Cs2CoCl4
using single-crystal neutron diffraction. In zero field interchain couplings
cause long-range order below T_N=217(5) mK with chains ordered
antiferromagnetically along their length and moments confined to the (b,c)
plane. Magnetic fields applied at an angle to the XY planes are found to
initially stabilize the order by promoting a spin-flop phase with an increased
perpendicular antiferromagnetic moment. In higher fields the antiferromagnetic
order becomes unstable and a transition occurs to a phase with no long-range
order in the (b,c) plane, proposed to be a spin liquid phase that arises when
the quantum fluctuations induced by the noncommuting field become strong enough
to overcome ordering tendencies. Magnetization measurements confirm that
saturation occurs at much higher fields and that the proposed spin-liquid state
exists in the region 2.10 < H_SL < 2.52 T || a. The observed phase diagram is
discussed in terms of known results on XY-like chains in coexisting
longitudinal and transverse fields.Comment: revtex, 14 figures, 2 tables, to appear in Phys. Rev.
Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS)2.
Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically simple layered molecular frameworks. Here, we report two new members of the family, manganese(II) thiocyanate, Mn(NCS)2, and iron(II) thiocyanate, Fe(NCS)2. Using magnetic susceptibility measurements on these materials and on cobalt(II) thiocyanate and nickel(II) thiocyanate, Co(NCS)2 and Ni(NCS)2, respectively, we identify significantly stronger net antiferromagnetic interactions between the earlier TM ions-a decrease in the Weiss constant, θ, from 29 K for Ni(NCS)2 to -115 K for Mn(NCS)2-a consequence of more diffuse 3d orbitals, increased orbital overlap, and increasing numbers of unpaired t2g electrons. We elucidate the magnetic structures of these materials: Mn(NCS)2, Fe(NCS)2, and Co(NCS)2 order into the same antiferromagnetic commensurate ground state, while Ni(NCS)2 adopts a ground state structure consisting of ferromagnetically ordered layers stacked antiferromagnetically. We show that significantly stronger exchange interactions can be realized in these thiocyanate frameworks by using earlier TMs.EPSRC NPIF 2018 fund
Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
NSERC of Canada PGSD fund
Trinity College, Cambridge
School of Chemistry, University of Nottingham Hobday Fellowship
EPSRC Strategic Equipment Grant EP/M000524/
Optical study of orbital excitations in transition-metal oxides
The orbital excitations of a series of transition-metal compounds are studied
by means of optical spectroscopy. Our aim was to identify signatures of
collective orbital excitations by comparison with experimental and theoretical
results for predominantly local crystal-field excitations. To this end, we have
studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10,
ranging from early to late transition-metal ions, from t_2g to e_g systems, and
including systems in which the exchange coupling is predominantly
three-dimensional, one-dimensional or zero-dimensional. With the exception of
LaMnO3, we find orbital excitations in all compounds. We discuss the
competition between orbital fluctuations (for dominant exchange coupling) and
crystal-field splitting (for dominant coupling to the lattice). Comparison of
our experimental results with configuration-interaction cluster calculations in
general yield good agreement, demonstrating that the coupling to the lattice is
important for a quantitative description of the orbital excitations in these
compounds. However, detailed theoretical predictions for the contribution of
collective orbital modes to the optical conductivity (e.g., the line shape or
the polarization dependence) are required to decide on a possible contribution
of orbital fluctuations at low energies, in particular in case of the orbital
excitations at about 0.25 eV in RTiO3. Further calculations are called for
which take into account the exchange interactions between the orbitals and the
coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved
calculation of orbital excitation energies in TiOCl, figure 16 improved,
references updated, 33 pages, 20 figure
Jurisprudences of jurisdiction: matters of public authority
This essay examines a number of jurisdictional engagements that point to difficulties in joining or separating relations between public authority, jurisprudences of jurisdiction and the writing of jurisprudence
- …