31 research outputs found

    High Estrogen Levels Cause Greater Leg Muscle Fatigability in Eumenorrheic Young Women after 4 mA Transcranial Direct Current Stimulation

    No full text
    Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels. A fatigue index (FI) was calculated to quantify fatigability, and the electromyography (EMG) of the knee extensors and flexors was recorded during the FT. The findings showed that tDCS applied during high estrogen levels resulted in greater leg muscle fatigability. Furthermore, a significant increase in EMG activity of the right knee extensors was observed during periods of active stimulation, independent of estrogen level. These results suggest that estrogen levels should be considered in tDCS studies with young healthy women

    Post-COVID-19 Fatigue: Potential Contributing Factors

    No full text
    Much of the spotlight for coronavirus disease 2019 (COVID-19) is on the acute symptoms and recovery. However, many recovered patients face persistent physical, cognitive, and psychological symptoms well past the acute phase. Of these symptoms, fatigue is one of the most persistent and debilitating. In this “perspective article,” we define fatigue as the decrease in physical and/or mental performance that results from changes in central, psychological, and/or peripheral factors due to the COVID-19 disease and propose a model to explain potential factors contributing to post-COVID-19 fatigue. According to our model, fatigue is dependent on conditional and physiological factors. Conditional dependency comprises the task, environment, and physical and mental capacity of individuals, while physiological factors include central, psychological, and peripheral aspects. This model provides a framework for clinicians and researchers. However, future research is needed to validate our proposed model and elucidate all mechanisms of fatigue due to COVID-19

    Effect of Post-COVID-19 on Brain Volume and Glucose Metabolism: Influence of Time Since Infection and Fatigue Status

    No full text
    Post-COVID-19 syndrome (PCS) fatigue is typically most severe 18F]-Fluorodeoxyglucose (FDG) provides a comprehensive overview of the effects of PCS on regional brain volumes and metabolism, respectively. The primary purpose of this exploratory study was to investigate differences in MRI/PET outcomes between people 6 months (N = 15, 6 female) after COVID-19. The secondary purpose was to assess if any differences in MRI/PET outcomes were associated with fatigue symptoms. Subjects > 6 months showed smaller volumes in the putamen, pallidum, and thalamus compared to subjects 6 months, fatigued subjects had smaller volumes in frontal areas compared to non-fatigued subjects. Moreover, worse fatigue was associated with smaller volumes in several frontal areas in subjects > 6 months. The results revealed no brain metabolism differences between subjects > 6 and 6 months, particularly those experiencing fatigue symptoms
    corecore