325 research outputs found
On the Energy-Momentum Tensor of the Scalar Field in Scalar--Tensor Theories of Gravity
We study the dynamical description of gravity, the appropriate definition of
the scalar field energy-momentum tensor, and the interrelation between them in
scalar-tensor theories of gravity. We show that the quantity which one would
naively identify as the energy-momentum tensor of the scalar field is not
appropriate because it is spoiled by a part of the dynamical description of
gravity. A new connection can be defined in terms of which the full dynamical
description of gravity is explicit, and the correct scalar field
energy-momentum tensor can be immediately identified. Certain inequalities must
be imposed on the two free functions (the coupling function and the potential)
that define a particular scalar-tensor theory, to ensure that the scalar field
energy density never becomes negative. The correct dynamical description leads
naturally to the Einstein frame formulation of scalar-tensor gravity which is
also studied in detail.Comment: Submitted to Phys. Rev D15, 10 pages. Uses ReVTeX macro
Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories
Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farese, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farese is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars
Phase-plane analysis of Friedmann-Robertson-Walker cosmologies in Brans-Dicke gravity
We present an autonomous phase-plane describing the evolution of
Friedmann-Robertson-Walker models containing a perfect fluid (with barotropic
index gamma) in Brans-Dicke gravity (with Brans-Dicke parameter omega). We find
self-similar fixed points corresponding to Nariai's power-law solutions for
spatially flat models and curvature-scaling solutions for curved models. At
infinite values of the phase-plane variables we recover O'Hanlon and Tupper's
vacuum solutions for spatially flat models and the Milne universe for negative
spatial curvature. We find conditions for the existence and stability of these
critical points and describe the qualitative evolution in all regions of the
(omega,gamma) parameter space for 0-3/2. We show that the
condition for inflation in Brans-Dicke gravity is always stronger than the
general relativistic condition, gamma<2/3.Comment: 24 pages, including 9 figures, LaTe
Single-molecule dynamics and genome-wide transcriptomics reveal that NF-kB (p65)-DNA binding times can be decoupled from transcriptional activation
Transcription factors (TFs) regulate gene expression in both prokaryotes and eukaryotes by recognizing and binding to specific DNA promoter sequences. In higher eukaryotes, it remains unclear how the duration of TF binding to DNA relates to downstream transcriptional output. Here, we address this question for the transcriptional activator NF-B (p65), by live-cell single molecule imaging of TF-DNA binding kinetics and genome-wide quantification of p65-mediated transcription. We used mutants of p65, perturbing either the DNA binding domain (DBD) or the protein-protein transactivation domain (TAD). We found that p65-DNA binding time was predominantly determined by its DBD and directly correlated with its transcriptional output as long as the TAD is intact. Surprisingly, mutation or deletion of the TAD did not modify p65-DNA binding stability, suggesting that the p65 TAD generally contributes neither to the assembly of an enhanceosome, nor to the active removal of p65 from putative specific binding sites. However, TAD removal did reduce p65-mediated transcriptional activation, indicating that protein-protein interactions act to translate the long-lived p65-DNA binding into productive transcription. Author summary To control the rate of transcription of genes, both eukaryotes and prokaryotes express specialized proteins, transcription factors (TF), that bind promoter sequences to mark them for the transcriptional machinery including DNA polymerase II. TFs are often multi-subunit proteins containing a DNA-binding domain (DBD) as well as a protein-protein interaction interface. It was suggested that the duration of a TF-DNA binding event 1) depends on these two subunits and 2) dictates the outcome, i.e. the amount of mRNA produced from an activated gene. We set out to investigate these hypotheses using the transcriptional activator NF-B (p65) as well as mutants affecting one of its functional subunits. Using a combination of live-cell microscopy and RNA sequencing, we show that p65 DNA-binding time indeed correlates with the transcriptional output, but that this relation depends on, and hence can be uncoupled by altering, the protein-protein interaction capacity. Our results suggest that, while p65 DNA binding times are dominated by the DBD, transcriptional output relies upon functional protein-protein interaction subunit
Nonlinear Dynamics of 3D Massive Gravity
We explore the nonlinear classical dynamics of the three-dimensional theory
of "New Massive Gravity" proposed by Bergshoeff, Hohm and Townsend. We find
that the theory passes remarkably highly nontrivial consistency checks at the
nonlinear level. In particular, we show that: (1) In the decoupling limit of
the theory, the interactions of the helicity-0 mode are described by a single
cubic term -- the so-called cubic Galileon -- previously found in the context
of the DGP model and in certain 4D massive gravities. (2) The conformal mode of
the metric coincides with the helicity-0 mode in the decoupling limit. Away
from this limit the nonlinear dynamics of the former is described by a certain
generalization of Galileon interactions, which like the Galileons themselves
have a well-posed Cauchy problem. (3) We give a non-perturbative argument based
on the presence of additional symmetries that the full theory does not lead to
any extra degrees of freedom, suggesting that a 3D analog of the 4D
Boulware-Deser ghost is not present in this theory. Last but not least, we
generalize "New Massive Gravity" and construct a class of 3D cubic order
massive models that retain the above properties.Comment: 21 page
Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry
We show that the anomalously large top quark forward-backward asymmetry
observed by CDF and D\O\, can naturally be accommodated in models with
flavor-violating couplings of a new massive spin-2 state to quarks. Regardless
of its origin, the lowest-order couplings of a spin-2 boson to fermions are
analogous to the coupling of the graviton to energy/momentum, leading to strong
sensitivity of the effects associated with its virtual exchange to the energy
scales at hand. Precisely due to this fact, the observed dependence of the
asymmetry on the invariant mass fits nicely into the proposed
framework. In particular, we find a vast parameter space which can lead to the
central value for the observed forward-backward asymmetry in the high mass bin,
while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches
version accepted for publication in JHE
Physics searches at the LHC
With the LHC up and running, the focus of experimental and theoretical high
energy physics will soon turn to an interpretation of LHC data in terms of the
physics of electroweak symmetry breaking and the TeV scale. We present here a
broad review of models for new TeV-scale physics and their LHC signatures. In
addition, we discuss possible new physics signatures and describe how they can
be linked to specific models of physics beyond the Standard Model. Finally, we
illustrate how the LHC era could culminate in a detailed understanding of the
underlying principles of TeV-scale physics.Comment: 184 pages, 55 figures, 14 tables, hundreds of references; scientific
feedback is welcome and encouraged. v2: text, references and Overview Table
added; feedback still welcom
From Solvent-Free Microspheres to Bioactive Gradient Scaffolds
A solvent-free microsphere sintering technique was developed to fabricate scaffolds with pore size gradient for tissue engineering applications. Poly(D,L-Lactide) microspheres were fabricated through an emulsification method where TiO2 nanoparticles were employed both as particulate emulsifier in the preparation procedure and as surface modification agent to improve bioactivity of the scaffolds. A fine-tunable pore size gradient was achieved with a pore volume of 30±2.6%. SEM, EDX, XRD and FTIR analyses all confirmed the formation of bone-like apatite at the 14th day of immersion in Simulated Body Fluid (SBF) implying the ability of our scaffolds to bond to living bone tissue. In vitro examination of the scaffolds showed progressive activity of the osteoblasts on the scaffold with evidence of increase in its mineral content. The bioactive scaffold developed in this study has the potential to be used as a suitable biomaterial for bone tissue engineering and hard tissue regeneration
Chemical Ubiquitination for Decrypting a Cellular Code
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized
The histochemistry of thiols and disulphides. II. Methodology of differential staining
The reduction of disulphide bonds by various mercaptans and tri- n -butylphosphine (TBP) has been examined in paraffin sections of rat tissues. A âre-reductionâ procedure demonstrating any residual disulphides shows that nearly equivalent endpoints are reached by all of the reagents at pH 8.5 and room temperature, though at greatly differing rates. TBP is the reductant of choice in that it acts rapidly, cannot cause the thiolation which is more or less pronounced with certain mercaptans and least reverses the prior alkylation of native thiol groups by iodoacetate or N-substituted malemides. Supporting studies establish that, except in highly compact structures, native as well as generated thiol groups can be visualized with satisfactory completeness and specificity by N-(4-aminophenyl)maleimide followed by a diazotization and coupling sequence. These findings provide the basis for the selective staining of disulphides, either alone or differentiated from native thiols in the same section.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42844/1/10735_2005_Article_BF01003139.pd
- âŠ