275 research outputs found

    Some Remarks on Realization of Simplicial Algebras in Cat

    Full text link
    In this paper we discuss why the passage from simplicial algebras over a Cat operad to algebras over that operad involves apparently unavoidable technicalities.Comment: 16 page

    Mechanisms of melanoma resistance to treatment with BRAF and MEK inhibitors

    Get PDF
    Several mechanisms of resistance to inhibition of BRAF activity in melanoma cells have been described so far. Genetic studies have shown that mutations in MEK1 kinase (MAP kinase kinase), which result in constitutive activation of ERK kinase, result in resistance to treatment. Another mechanism of the acquired BRAF inhibition resistance is the accumulation of activating mutations in the NRAS oncogene, which drives the activation of CRAF. This in turn leads to a permanent activation of the signal transduction to MEK and ERK. Another important mechanism of resistance is the formation of variants of the BRAF V600E gene splicing, including variants that lack exons 4 to 8 containing the RAS-binding domain. The presence of the p61 BRAF V600E variant leads to the constitutive ERK signal, which is resistant to RAF inhibition. In addition, treatment resistance is affected by hyperactivation of tyrosine kinase receptors such as platelet-derived factor receptor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and erythropoietin-producing hepatocellular receptors (EPH) – leading to the induction of the 3-phosphoinositol kinase pathway (PI3K) in patients treated with BRAF or MEK inhibitors. Another interesting path of BRAFi/MEKi resistance is over-expression of the epidermal growth factor receptor (EGFR) through ne­gative feedback in patients treated with BRAF inhibitors (BRAFi) – EGFR is not normally expressed in untreated melanomas

    An in vivo evaluation of Brilliant Blue G in animals and humans

    Get PDF
    Background/Aims: To evaluate the retinal toxicity of Brilliant Blue G (BBG) following intravitreal injection in rat eyes and examine the biocompatibility and the staining properties in humans.Methods: BBG was injected into the 11 rat eyes to evaluate toxic effects with balanced salt solution (BSS) serving as control. Retinal toxicity was assessed by retinal ganglion cell (RGC) counts and by light microscopy 7 days later. In addition, BBG was applied during vitrectomy for macular hole (MH) (n = 15) or epiretinal membranes (ERM) (n = 3) in a prospective, non-comparative consecutive series of patients. Before and after surgery, all patients underwent a complete clinical examination including measurement of best corrected visual acuity (VA) and intraocular pressure, perimetry, fundus photography and optical coherence tomography. Patients were seen 1 day before surgery and then in approximately four weeks intervals.Results: No significant reduction in RGC numbers and no morphological alterations were noted. A sufficient staining of the internal limiting membrane (ILM) was seen in patients with MH, while the staining pattern in ERM cases was patchy, indicating that parts of the ILM were peeled off along with the ERM in a variable extent. All MHs could be closed successfully. VA improved in 10 eyes (56%; 8/15 MH patients, 2/3 ERM patients), was unchanged in four eyes (22%; all MH patients) and was reduced in four eyes (22%; 3/15 MH, 1/3 ERM). No toxic effects attributable to the dye were noted during patient follow-up. The ultrastructure of tissue harvested during surgery was unremarkable.Conclusion: Brilliant Blue provides a sufficient and selective staining of the ILM. No retinal toxicity or adverse effects related to the dye were observed in animal and human studies. The long-term safety of this novel dye will have to be evaluated in larger patient series and a longer follow-up

    Nanoimaging using soft X-ray and EUV laser-plasma sources

    Get PDF
    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications

    New perspectives for eye-sparing treatment strategies in primary uveal melanoma

    Get PDF
    Uveal melanoma is the most common intraocular malignancy and arises from melanocytes in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or photodynamic therapy. However, the efficacy of these methods is still unsatisfactory. This article reviews several possible new treatment options and their potential advantages in treating localized uveal melanoma. These methods may be based on the physical destruction of the cancerous cells by applying ultrasounds. Two examples of such an approach are High-Intensity Focused Ultrasound (HIFU)—a promising technology of thermal destruction of solid tumors located deep under the skin and sonodynamic therapy (SDT) that induces reactive oxygen species. Another approach may be based on improving the penetration of anti-cancer agents into UM cells. The most promising technologies from this group are based on enhancing drug delivery by applying electric current. One such approach is called transcorneal iontophoresis and has already been shown to increase the local concentration of several different therapeutics. Another technique, electrically enhanced chemotherapy, may promote drug delivery from the intercellular space to cells. Finally, new advanced nanoparticles are developed to combine diagnostic imaging and therapy (i.e., theranostics). However, development. these methods More are mostly advanced at an and early targeted stage of preclinical development. studies More and advanced clinical trials and targeted would be preclinical needed to studies introduce and some clinical of trials these would techniques be needed to routine to introduce clinical practice. some of these techniques to routine clinical practice
    corecore