843 research outputs found
Lattice QCD study of a five-quark hadronic molecule
We compute the ground-state energies of a heavy-light K-Lambda like system as
a function of the relative distance r of the hadrons. The heavy quarks, one in
each hadron, are treated as static. Then, the energies give rise to an
adiabatic potential Va(r) which we use to study the structure of the five-quark
system. The simulation is based on an anisotropic and asymmetric lattice with
Wilson fermions. Energies are extracted from spectral density functions
obtained with the maximum entropy method. Our results are meant to give
qualitative insight: Using the resulting adiabatic potential in a Schroedinger
equation produces bound state wave functions which indicate that the ground
state of the five-quark system resembles a hadronic molecule, whereas the first
excited state, having a very small rms radius, is probably better described as
a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark
pentaquark may not exist, but in the heavy-quark sector it might, albeit only
as an excited state.Comment: 11 pages, 15 figures, 4 table
Symmetry Analysis of Second Harmonic Generation at Surfaces of Antiferromagnets
Using group theory we classify the nonlinear magneto-optical response at
low-index surfaces of fcc antiferromagnets, such as NiO. Structures consisting
of one atomic layer are discussed in detail. We find that optical second
harmonic generation is sensitive to surface antiferromagnetism in many cases.
We discuss the influence of a second type of magnetic atoms, and also of a
possible oxygen sublattice distortion on the output signal. Finally, our
symmetry analysis yields the possibility of antiferromagnetic surface domain
imaging even in the presence of magnetic unit-cell doubling.Comment: 23 pages, 10 figures incorporated. Accepted to Phys. Rev. B,
scheduled for July'9
Exotic Meson Decay Widths using Lattice QCD
A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is
presented for the channel h->pi+a1. This quenched lattice QCD simulation
employs Luescher's finite box method. Operators coupling to the h and pi+a1
states are used at various levels of smearing and fuzzing, and at four quark
masses. Eigenvalues of the corresponding correlation matrices yield energy
spectra that determine scattering phase shifts for a discrete set of relative
pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner
model are attempted, resulting in a decay width of about 60 MeV when averaged
over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.
Residual meson-meson interaction from lattice gauge simulation in a simple QED model
The residual interaction for a meson-meson system is computed utilizing the
cumulant, or cluster, expansion of the momentum-space time correlation matrix.
The cumulant expansion serves to define asymptotic, or free, meson-meson
operators. The definition of an effective interaction is then based on a
comparison of the full (interacting) and the free (noninteracting) time
correlation matrices. The proposed method, which may straightforwardly be
transcribed to other hadron-hadron systems, here is applied to a simple 2+1
dimensional U(1) lattice gauge model tuned such that it is confining. Fermions
are treated in the staggered scheme. The effective interaction exhibits a
repulsive core and attraction at intermediate relative distances. These
findings are consistent with an earlier study of the same model utilizing
L\"{u}scher's method where scattering phase shifts are obtained directly.Comment: 28 pages, compressed postscript fil
Electric Polarizability of Neutral Hadrons from Lattice QCD
By simulating a uniform electric field on a lattice and measuring the change
in the rest mass, we calculate the electric polarizability of neutral mesons
and baryons using the methods of quenched lattice QCD. Specifically, we measure
the electric polarizability coefficient from the quadratic response to the
electric field for 10 particles: the vector mesons and ; the
octet baryons n, , , , and ;
and the decouplet baryons , , and .
Independent calculations using two fermion actions were done for consistency
and comparison purposes. One calculation uses Wilson fermions with a lattice
spacing of fm. The other uses tadpole improved L\"usher-Weiss gauge
fields and clover quark action with a lattice spacing fm. Our results
for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure
Theory of Excitonic States in CaB6
We study the excitonic states in CaB6 in terms of the Ginzburg-Landau theory.
By minimizing the free energy and by comparing with experimental results, we
identify two possible ground states with exciton condensation. They both break
time-reversal and inversion symmetries. This leads to various magnetic and
optical properties. As for magnetic properties, it is expected to be an
antiferromagnet, and its spin structure is predicted. It will exhibit the
magnetoelectric effect, and observed novel ferromagnetism in doped samples and
in thin-film and powder samples can arise from this effect. Interesting optical
phenomena such as the nonreciprocal optical effect and the second harmonic
generation are predicted. Their measurement for CaB6 will clarify whether
exciton condensation occurs or not and which of the two states is realized.Comment: 17 pages, 3 figure
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
The complex multiferroic phase diagram of MnCoWO
The complete magnetic and multiferroic phase diagram of
MnCoWO single crystals is investigated by means of magnetic,
heat capacity, and polarization experiments. We show that the ferroelectric
polarization in the multiferroic state abruptly changes
its direction twice upon increasing Co content, x. At x=0.075,
rotates from the axis into the plane and at
x=0.15 it flips back to the axis. The origin of the multiple
polarization flops is identified as an effect of the Co anisotropy on the
orientation and shape of the spin helix leading to thermodynamic instabilities
caused by the decrease of the magnitude of the polarization in the
corresponding phases. A qualitative description of the ferroelectric
polarization is derived by taking into account the intrachain (axis) as
well as the interchain (axis) exchange pathways connecting the magnetic
ions. In a narrow Co concentration range (0.1x0.15), an
intermediate phase, sandwiched between the collinear high-temperature and the
helical low-temperature phases, is discovered. The new phase exhibits a
collinear and commensurate spin modulation similar to the low-temperature
magnetic structure of MnWO.Comment: 18 pages, 6 figure
Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films
Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on
SrTiO3 substrates, and orbital ordering and magnetic properties of the thin
films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave
vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This
peculiar orbital order inherently contains magnetic frustration. While bulk
BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by
in-plane compressive strains in the films brings about cluster-glass-like
properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter
- …