843 research outputs found

    Lattice QCD study of a five-quark hadronic molecule

    Full text link
    We compute the ground-state energies of a heavy-light K-Lambda like system as a function of the relative distance r of the hadrons. The heavy quarks, one in each hadron, are treated as static. Then, the energies give rise to an adiabatic potential Va(r) which we use to study the structure of the five-quark system. The simulation is based on an anisotropic and asymmetric lattice with Wilson fermions. Energies are extracted from spectral density functions obtained with the maximum entropy method. Our results are meant to give qualitative insight: Using the resulting adiabatic potential in a Schroedinger equation produces bound state wave functions which indicate that the ground state of the five-quark system resembles a hadronic molecule, whereas the first excited state, having a very small rms radius, is probably better described as a five-quark cluster, or a pentaquark. We hypothesize that an all light-quark pentaquark may not exist, but in the heavy-quark sector it might, albeit only as an excited state.Comment: 11 pages, 15 figures, 4 table

    Symmetry Analysis of Second Harmonic Generation at Surfaces of Antiferromagnets

    Full text link
    Using group theory we classify the nonlinear magneto-optical response at low-index surfaces of fcc antiferromagnets, such as NiO. Structures consisting of one atomic layer are discussed in detail. We find that optical second harmonic generation is sensitive to surface antiferromagnetism in many cases. We discuss the influence of a second type of magnetic atoms, and also of a possible oxygen sublattice distortion on the output signal. Finally, our symmetry analysis yields the possibility of antiferromagnetic surface domain imaging even in the presence of magnetic unit-cell doubling.Comment: 23 pages, 10 figures incorporated. Accepted to Phys. Rev. B, scheduled for July'9

    Exotic Meson Decay Widths using Lattice QCD

    Get PDF
    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.

    Residual meson-meson interaction from lattice gauge simulation in a simple QED model

    Full text link
    The residual interaction for a meson-meson system is computed utilizing the cumulant, or cluster, expansion of the momentum-space time correlation matrix. The cumulant expansion serves to define asymptotic, or free, meson-meson operators. The definition of an effective interaction is then based on a comparison of the full (interacting) and the free (noninteracting) time correlation matrices. The proposed method, which may straightforwardly be transcribed to other hadron-hadron systems, here is applied to a simple 2+1 dimensional U(1) lattice gauge model tuned such that it is confining. Fermions are treated in the staggered scheme. The effective interaction exhibits a repulsive core and attraction at intermediate relative distances. These findings are consistent with an earlier study of the same model utilizing L\"{u}scher's method where scattering phase shifts are obtained directly.Comment: 28 pages, compressed postscript fil

    Electric Polarizability of Neutral Hadrons from Lattice QCD

    Full text link
    By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons ρ0\rho^0 and K0K^{*0}; the octet baryons n, Σ0\Sigma^0, Λo0\Lambda_{o}^{0}, Λs0\Lambda_{s}^{0}, and Ξ0\Xi^0; and the decouplet baryons Δ0\Delta^0, Σ0\Sigma^{*0}, and Ξ0\Xi^{*0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a=0.10a=0.10 fm. The other uses tadpole improved L\"usher-Weiss gauge fields and clover quark action with a lattice spacing a=0.17a=0.17 fm. Our results for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure

    Theory of Excitonic States in CaB6

    Full text link
    We study the excitonic states in CaB6 in terms of the Ginzburg-Landau theory. By minimizing the free energy and by comparing with experimental results, we identify two possible ground states with exciton condensation. They both break time-reversal and inversion symmetries. This leads to various magnetic and optical properties. As for magnetic properties, it is expected to be an antiferromagnet, and its spin structure is predicted. It will exhibit the magnetoelectric effect, and observed novel ferromagnetism in doped samples and in thin-film and powder samples can arise from this effect. Interesting optical phenomena such as the nonreciprocal optical effect and the second harmonic generation are predicted. Their measurement for CaB6 will clarify whether exciton condensation occurs or not and which of the two states is realized.Comment: 17 pages, 3 figure

    Prediction for new magnetoelectric fluorides

    Get PDF
    We use symmetry considerations in order to predict new magnetoelectric fluorides. In addition to these magnetoelectric properties, we discuss among these fluorides the ones susceptible to present multiferroic properties. We emphasize that several materials present ferromagnetic properties. This ferromagnetism should enhance the interplay between magnetic and dielectric properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed Matte

    The complex multiferroic phase diagram of Mn1x_{1-x}Cox_xWO4_4

    Full text link
    The complete magnetic and multiferroic phase diagram of Mn1x_{1-x}Cox_{x}WO4_4 single crystals is investigated by means of magnetic, heat capacity, and polarization experiments. We show that the ferroelectric polarization P\overrightarrow{P} in the multiferroic state abruptly changes its direction twice upon increasing Co content, x. At xc1_{c1}=0.075, P\overrightarrow{P} rotates from the bb-axis into the aca-c plane and at xc2_{c2}=0.15 it flips back to the bb-axis. The origin of the multiple polarization flops is identified as an effect of the Co anisotropy on the orientation and shape of the spin helix leading to thermodynamic instabilities caused by the decrease of the magnitude of the polarization in the corresponding phases. A qualitative description of the ferroelectric polarization is derived by taking into account the intrachain (cc-axis) as well as the interchain (aa-axis) exchange pathways connecting the magnetic ions. In a narrow Co concentration range (0.1\leqx\leq0.15), an intermediate phase, sandwiched between the collinear high-temperature and the helical low-temperature phases, is discovered. The new phase exhibits a collinear and commensurate spin modulation similar to the low-temperature magnetic structure of MnWO4_4.Comment: 18 pages, 6 figure

    Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films

    Full text link
    Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter
    corecore