7 research outputs found
Recommended from our members
Potential of 18F-FDG PET toward personalized radiotherapy or chemoradiotherapy in lung cancer
Purpose We investigated the metabolic response of lung cancer to radiotherapy or chemoradiotherapy by 18F-FDG PET and its utility in guiding timely supplementary therapy. Methods: Glucose metabolic rate (MRglc) was measured in primary lung cancers during the 3 weeks before, and 10ā12 days (S2), 3 months (S3), 6 months (S4), and 12 months (S5) after radiotherapy or chemoradiotherapy. The association between the lowest residual MRglc representing the maximum metabolic response (MRglc-MMR) and tumor control probability (TCP) at 12 months was modeled using logistic regression. Results: We accrued 106 patients, of whom 61 completed the serial 18F-FDG PET scans. The median values of MRglc at S2, S3 and S4 determined using a simplified kinetic method (SKM) were, respectively, 0.05, 0.06 and 0.07 Ī¼mol/min/g for tumors with local control and 0.12, 0.16 and 0.19 Ī¼mol/min/g for tumors with local failure, and the maximum standard uptake values (SUVmax) were 1.16, 1.33 and 1.45 for tumors with local control and 2.74, 2.74 and 4.07 for tumors with local failure (p < 0.0001). MRglc-MMR was realized at S2 (MRglc-S2) and the values corresponding to TCP 95 %, 90 % and 50 % were 0.036, 0.050 and 0.134 Ī¼mol/min/g using the SKM and 0.70, 0.91 and 1.95 using SUVmax, respectively. Probability cut-off values were generated for a given level of MRglc-S2 based on its predicted TCP, sensitivity and specificity, and MRglc ā¤0.071 Ī¼mol/min/g and SUVmax ā¤1.45 were determined as the optimum cut-off values for predicted TCP 80 %, sensitivity 100 % and specificity 63 %. Conclusion: The cut-off values (MRglc ā¤0.071 Ī¼mol/min/g using the SKM and SUVmax ā¤1.45) need to be tested for their utility in identifying patients with a high risk of residual cancer after standard dose radiotherapy or chemoradiotherapy and in guiding a timely supplementary dose of radiation or other means of salvage therapy. Electronic supplementary material The online version of this article (doi:10.1007/s00259-013-2348-4) contains supplementary material, which is available to authorized users
Neoadjuvant irinotecan, cisplatin, and concurrent radiation therapy with celecoxib for patients with locally advanced esophageal cancer
Background: Patients with locally advanced esophageal cancer who are treated with trimodality therapy have a high recurrence rate. Preclinical evidence suggests that inhibition of cyclooxygenase 2 (COX2) increases the effectiveness of chemoradiation, and observational studies in humans suggest that COX-2 inhibition may reduce esophageal cancer risk. This trial tested the safety and efficacy of combining a COX2 inhibitor, celecoxib, with neoadjuvant irinotecan/cisplatin chemoradiation. Methods: This single arm phase 2 trial combined irinotecan, cisplatin, and celecoxib with concurrent radiation therapy. Patients with stage IIA-IVA esophageal cancer received weekly cisplatin 30 mg/m2 plus irinotecan 65 mg/m2 on weeks 1, 2, 4, and 5 concurrently with 5040 cGy of radiation therapy. Celecoxib 400 mg was taken orally twice daily during chemoradiation, up to 1 week before surgery, and for 6 months following surgery. Results: Forty patients were enrolled with stage IIa (30 %), stage IIb (20 %), stage III (22.5 %), and stage IVA (27.5 %) esophageal or gastroesophageal junction cancer (AJCC, 5th Edition). During chemoradiation, grade 3ā4 treatment-related toxicity included dysphagia (20 %), anorexia (17.5 %), dehydration (17.5 %), nausea (15 %), neutropenia (12.5 %), diarrhea (10 %), fatigue (7.5 %), and febrile neutropenia (7.5 %). The pathological complete response rate was 32.5 %. The median progression free survival was 15.7 months and the median overall survival was 34.7 months. 15 % (n = 6) of patients treated on this study developed brain metastases. Conclusions: The addition of celecoxib to neoadjuvant cisplatin-irinotecan chemoradiation was tolerable; however, overall survival appeared comparable to prior studies using neoadjuvant cisplatin-irinotecan chemoradiation alone. Further studies adding celecoxib to neoadjuvant chemoradiation in esophageal cancer are not warranted. Trial registration Clinicaltrials.gov: NCT00137852, registered August 29, 2005