89 research outputs found

    Generation of Caustics and Spatial Rogue Waves from Nonlinear Instability

    Get PDF
    Caustics are natural phenomena in which nature concentrates the energy of waves. Although, they are known mostly in optics, caustics are intrinsic to all wave phenomena. For example, studies show that fluctuations in the profile of an ocean floor can generate random caustics and focus the energy of tsunami waves. Caustics share many similarities to rogue waves, as they both exhibit heavy-tailed distribution, i.e. an overpopulation of large events. Linear Schr\"odinger-type equations are usually used to explain the wave dynamics of caustics. However, in that the wave amplitude increases dramatically in caustics, nonlinearity is inevitable in many systems. In this Letter, we investigate the effect of nonlinearity on the formation of optical caustics. We show experimentally that, in contrast to linear systems, even small phase fluctuations can generate strong caustics upon nonlinear propagation. We simulated our experiment based on the nonlinear Schr\"odinger equation (NLSE) with Kerr-type nonlinearity, which describes the wave dynamics not only in optics, but also in some other physical systems such as oceans. Therefore, our results may also aid our understanding of ocean phenomena.Comment: 5 pages, 4 figure

    Controlling induced coherence for quantum imaging

    Full text link
    Induced coherence in parametric down-conversion between two coherently pumped nonlinear crystals that share a common idler mode can be used as an imaging technique. Based on the interference between the two signal modes of the crystals, an image can be reconstructed. By obtaining an expression for the interference pattern that is valid in both the low- and the high-gain regimes of parametric down-conversion, we show how the coherence of the light emitted by the two crystals can be controlled. With our comprehensive analysis we provide deeper insight into recent discussions about the application of induced coherence to imaging in different regimes. Moreover, we propose a scheme for optimizing the visibility of the interference pattern so that it directly corresponds to the degree of coherence of the light generated in the two crystals. We find that this scheme leads in the high-gain regime to a visibility arbitrarily close to unity.Comment: 9 pages, 4 figure

    Measurement of the Photon-Plasmon Coupling Phase

    Get PDF
    Scattering processes have played a crucial role in the development of quantum theory. In the field of optics, scattering phase shifts have been utilized to unveil interesting forms of light-matter interactions. Here, we investigate the mode-coupling phase of single photons to surface plasmon polaritons in a quantum plasmonic tritter. We observe that the coupling process induces a phase jump that occurs when photons scatter into surface plasmons and vice versa. This interesting coupling phase dynamics is of particular relevance for quantum plasmonic experiments. Furthermore, it is demonstrated that this photon-plasmon interaction can be modeled through a quantum-mechanical tritter. We show that the visibility of a double-slit and a triple-slit interference patterns are convenient observables to characterize the interaction at a slit and determine the coupling phase. Our accurate and simple model of the interaction, validated by simulations and experiments, has important implications not only for quantum plasmonic interference effects, but is also advantageous to classical applications

    Entanglement: Quantum or Classical?

    Get PDF
    From its seemingly non-intuitive and puzzling nature, most evident in numerous EPR-like gedankenexperiments to its almost ubiquitous presence in quantum technologies, entanglement is at the heart of modern quantum physics. First introduced by Erwin Schr\"{o}dinger nearly a century ago, entanglement has remained one of the most fascinating ideas that came out of quantum mechanics. Here, we attempt to explain what makes entanglement fundamentally different from any classical phenomenon. To this end, we start with a historical overview of entanglement and discuss several hidden variables models that were conceived to provide a classical explanation and demystify quantum entanglement. We discuss some inequalities and bounds that are violated by quantum states thereby falsifying the existence of some of the classical hidden variables theories. We also discuss some exciting manifestations of entanglement, such as N00N states and the non-separable single particle states. We conclude by discussing some contemporary results regarding quantum correlations and present a future outlook for the research of quantum entanglement

    Influence of pump coherence on the quantum properties of spontaneous parametric down-conversion

    Full text link
    The correlation properties of the pump field in spontaneous parametric down-conversion are crucial in determining the degree of entanglement of generated signal and idler photons. We find theoretically that continuous-variable entanglement of the transverse positions and momenta of these photons can be achieved only if the coherence of the pump beam is sufficiently high. The positions of signal and idler photons are found to be correlated, even for an incoherent pump. However, the momenta of the signal and idler photons are not anti-correlated, even though transverse momentum is conserved.Comment: 9 pages, 4 figures, author's origina

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    The influence of pump coherence on the generation of position-momentum entanglement in down-conversion

    Get PDF
    Strong correlations in two conjugate variables are the signature of quantum entanglement and have played a key role in the development of modern physics. Entangled photons have become a standard tool in quantum information and foundations. An impressive example is position-momentum entanglement of photon pairs, explained heuristically through the correlations implied by a common birth zone and momentum conservation. However, these arguments entirely neglect the importance of the `quantumness', i.e. coherence, of the driving force behind the generation mechanism. We study theoretically and experimentally how the correlations depend on the coherence of the pump of nonlinear down-conversion. In the extreme case - a truly incoherent pump - only position correlations exist. By increasing the pump's coherence, correlations in momenta emerge until their strength is sufficient to produce entanglement. Our results shed light on entanglement generation and can be applied to adjust the entanglement for quantum information applications.Comment: 6 pages, 4 figure

    The influence of pump coherence on the generation of position-momentum entanglement in down-conversion

    Full text link
    Strong correlations in two conjugate variables are the signature of quantum entanglement and have played a key role in the development of modern physics. Entangled photons have become a standard tool in quantum information and foundations. An impressive example is position-momentum entanglement of photon pairs, explained heuristically through the correlations implied by a common birth zone and momentum conservation. However, these arguments entirely neglect the importance of the `quantumness', i.e. coherence, of the driving force behind the generation mechanism. We study theoretically and experimentally how the correlations depend on the coherence of the pump of nonlinear down-conversion. In the extreme case - a truly incoherent pump - only position correlations exist. By increasing the pump's coherence, correlations in momenta emerge until their strength is sufficient to produce entanglement. Our results shed light on entanglement generation and can be applied to adjust the entanglement for quantum information applications.Comment: 6 pages, 4 figure
    corecore