7 research outputs found

    Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells

    No full text
    A novel approach for multivalent targeting by using gold nanoparticles noncovalently decorated by tight functionalization with a cone-glycocalixarene bearing four mannose units is reported. The targeting efficiency of these multivalent nanoparticles is shown to be remarkably improved compared to that of nanoparticles bearing a monovalent mannosylated derivative

    Clicked and long spaced galactosyl- and lactosylcalix[4]arenes: new multivalent galectin-3 ligands

    No full text
    Four novel calix[4]arene-based glycoclusters were synthesized by conjugating the saccharide units to the macrocyclic scaffold using the CuAAC reaction and using long and hydrophilic ethylene glycol spacers. Initially, two galactosylcalix[4]arenes were prepared starting from saccharide units and calixarene cores which differ in the relative dispositions of the alkyne and azido groups. Once the most convenient synthetic pathway was selected, two further lactosylcalix[4]arenes were obtained, one in the cone, the other one in the 1,3-alternate structure. Preliminary studies of the interactions of these novel glycocalixarenes with galectin-3 were carried out by using a lectin-functionalized chip and surface plasmon resonance. These studies indicate a higher affinity of lactosyl- over galactosylcalixarenes. Furthermore, we confirmed that in case of this specific lectin binding the presentation of lactose units on a cone calixarene is highly preferred with respect to its isomeric form in the 1,3-alternate structure

    Determination of acetyl coenzyme A in human whole blood by ultra-performance liquid chromatography-mass spectrometry

    No full text
    Acetyl coenzyme A is involved in several key metabolic pathways. Its concentration can vary considerably in response to physiological or pathological conditions making it a potentially valuable biomarker. However, little information about the measurement and concentration of acetyl CoA in human whole blood is found in the literature. The aim of this study was the development of an accurate method for the determination of acetyl CoA in human whole blood by LC-MS/MS. The method, involving extraction from whole blood by a rapid protein precipitation procedure was thoroughly validated: limit of quantitation was 3.91 ng mL-1. Accuracy and precision were calculated at five concentrations and were within ±15%. The average endogenous level of acetyl CoA in human whole blood was determined in 17 healthy individuals to be 220.9 ng mL-1 (ranging from 124.0 to 308.0 ng mL-1). This represents, to our knowledge, the first report of acetyl CoA levels in human whole blood, and the first practical and reliable method for its determination

    5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein

    No full text
    The HIV-1 nucleocapsid (NC) protein is a small basic DNA and RNA binding protein that is absolutely necessary for viral replication and thus represents a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) that emerged following the highly active antiretroviral therapy (HAART) treatment. On the basis of our previous research, nordihydroguaiaretic acid 1 acts as a NC inhibitor showing moderate antiviral activity and suboptimal drug-like properties due to the presence of the catechol moieties. A bioisosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as a privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimized analogs, as represented by compound 28, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties
    corecore