9 research outputs found

    Synthesis of Antenna Arrays and Parasitic Antenna Arrays with Mutual Couplings

    Get PDF
    A synthesis method to design multielement antennas with couplings is presented. The main objective is to perform a rigorous determination of the electromagnetic characteristics involved in the design, especially with arrays of moderate sizes. The aim is to conceive jointly and efficiently the antenna and the circuits to connect (feed distribution network, power amplifiers, reactive loads, etc.). The subsequent objective is to improve the understanding and capabilities of strongly coupled antennas. As a whole, the synthesis procedure is then applied to different antenna architectures in order to show its efficiency and versatility. A focus on some antenna concepts where the management of couplings is a key factor to improve the performances is presented. After describing the synthesis procedure, the first category of coupled multielement antenna studied concerns radiating arrays in linear or circular polarization. A design including couplings effects on an active array is also presented. Then, the method is applied to parasitic antenna arrays and a specific investigation on reflectarray antenna is performed as they can be considered as a particular case of parasitic arrays

    Magnetorheological effects governed by orientational fluctuations

    No full text
    International audienceIIn this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR response in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency , revealed in experiments. We also discuss a possible mechanism to explain the enhancement of the magnetic field-induced yield stress when nonmagnetic particles are added to magnetic particulate suspensions –i.e., bi-component suspensions. Our main hypothesis is that the nonmagnetic particles collide with the field-induced magnetic aggregates under shear flow. Consequently, supplementary fluctuations of the orientations of the magnetic aggregates occur, resulting in an effective rotary diffusion process, which increases the dynamic yield stress of the suspension. Furthermore, the collision rate and the rotary diffusivity of the aggregates should increase with the concentration of nonmagnetic particles. Rheological measurements in plate-plate and cylindrical Couette geometries confirm the increase of the yield stress with the volume fraction of nonmagnetic particles. In addition, such an effect appears to be more important in Couette geometry, for which orientation fluctuations of the magnetic aggregates play a more significant role. Finally, a theoretical model based on this rotary diffusion mechanism is developed, providing with a quantitative explanation to the experimentally-observed trends
    corecore