297 research outputs found

    Magnetic-Field Induced Gap in One-Dimensional Antiferromagnet KCuGaF6_6

    Full text link
    Magnetic susceptibility and specific heat measurements in magnetic fields were performed on an S=1/2S=1/2 one-dimensional antiferromagnet KCuGaF6_6. Exchange interaction was evaluated as J/kB≃100J/k_{\rm B}\simeq 100 K. However, no magnetic ordering was observed down to 0.46 K. It was found that an applied magnetic field induces a staggered magnetic susceptibility obeying the Curie law and an excitation gap, both of which should be attributed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type and/or the staggered gg-tensor. With increasing magnetic field HH, the gap increases almost in proportion to H2/3H^{2/3}.Comment: Submitted to Proceedings of Research in High Magnetic Fiel

    Unusual magnetic-field dependence of partially frustrated triangular ordering in manganese tricyanomethanide

    Full text link
    Manganese tricyanomethanide, Mn[C(CN)3]2, consists of two interpenetrating three-dimensional rutile-like networks. In each network, the tridentate C(CN)3- anion gives rise to superexchange interactions between the Mn2+ ions (S=5/2) that can be mapped onto the "row model" for partially frustrated triangular magnets. We present heat capacity measurements that reveal a phase transition at T_N = 1.18K, indicative of magnetic ordering. The zero-field magnetically ordered structure was solved from neutron powder diffraction data taken between 0.04 and 1.2 K. It consists of an incommensurate spiral with a temperature independent propagation vector Q=(2Q 0 0)=(+/-0.622 0 0), where different signs relate to the two different networks. This corresponds to (+/-0.311 +/-0.311 0) in a quasi-hexagonal representation. The ordered moment mu=3.3mu_B is about 2/3 of the full Mn2+ moment. From the values of T_N and Q, the exchange parameters J/k = 0.15 K and J'/J = 0.749 are estimated. The magnetic-field dependence of the intensity of the Bragg reflection, measured for external fields H||Q, indicates the presence of three different magnetic phases. We associate them with the incommensurate spiral (H < 13.5 kOe), an intermediate phase (13.5 kOe 16 kOe) proposed for related compounds. For increasing fields, Q continuously approaches the value 1/3, corresponding to the commensurate magnetic structure of the fully frustrated triangular lattice. This value is reached at H_c = 19 kOe. At this point, the field-dependence reverses and Q adopts a value of 0.327 at 26 kOe, the highest field applied in the experiment. Except for H_c, the magnetic ordering is incommensurate in all three magnetic phases of Mn[C(CN)3]2.Comment: accepted for publication in J. Phys.: Condens. Matte

    Electron Spin Resonance in sine-Gordon spin chains in the perturbative spinon regime

    Full text link
    We report the low-temperature multi-frequency ESR studies of copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating gg-tensor and the Dzyaloshinskii-Moriya interaction, allowing us to test a new theoretical concept proposed recently by Oshikawa and Affleck [Phys. Rev. Lett. 82, 5136 (1999)]. Their theory, based on bosonization and the self-energy formalism, can be applied for precise calculation of ESR parameters of S=1/2S=1/2 antiferromagnetic chains in the perturbative spinon regime. Excellent quantitative agreement between the theoretical predictions and experiment is obtained.Comment: 4 pages, 4 figure

    Rare earth magnetism and ferroelectricity in RMnO3

    Get PDF
    Magnetic rare earths R have been proven to have a significant effect on the multiferroic properties of the orthorhombic manganites RMnO3. A re-examination of previous results from synchrotron based x-ray scattering experiments suggests that symmetric exchange striction between neighboring R and Mn ions may account for the enhancement of the ferroelectric polarization in DyMnO3 as well as the magnetic-field induced ferroelectricity in GdMnO3. In general, adding a second magnetic species to a multiferroic material may be a route to enhance its ferroelectric properties.Comment: Contribution to ICM 2009; accepted for publication in Journal of Physics: Conference Serie

    Valence modulations in CeRuSn

    Get PDF
    CeRuSn exhibits an extraordinary room temperature structure at 300~K with coexistence of two types of Ce ions, namely trivalent Ce3+^{3+} and intermediate valent Ce(4−δ)+^{(4-\delta)+}, in a metallic environment. The ordered arrangement of these two Ce types on specific crystallographic sites results in a doubling of the unit cell along the cc-axis with respect to the basic monoclinic CeCoAl-type structure. Below room temperature, structural modulation transitions with very broad hysteresis have been reported from measurements of various bulk properties. X-ray diffraction revealed that at low temperatures the doubling of the CeCoAl type structure is replaced by a different modulated ground state, approximating a near tripling of the basic CeCoAl cell. The transition is accompanied by a significant contraction of the cc axis. We present new x-ray absorption near-edge spectroscopy data at the Ce L3_{3} absorption edge, measured on a freshly cleaved surface of a CeRuSn single crystal. In contrast to a previous report, the new data exhibit small but significant variations as function of temperature that are consistent with a transition of a fraction of Ce3+^{3+} ions to the intermediate valence state, analogous to the γ→α\gamma \rightarrow \alpha transition in elemental cerium, when cooling through the structural transitions of CeRuSn. Such results in a valence-modulated state

    Field-Induced Gap in a Quantum Spin-1/2 Chain in a Strong Magnetic Field

    Full text link
    Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating gg-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field Hsat=48.5H_{sat}=48.5 T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field

    Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in orthorhombic DyMnO3

    Get PDF
    Synchrotron x-ray diffraction and resonant magnetic scattering experiments on single crystal DyMnO3 have been carried out between 4 and 40 K. Below TN(Dy) = 5K, the Dy magnetic moments order in a commensurate structure with propagation vector 0.5 b*. Simultaneous with the Dy magnetic ordering, an incommensurate lattice modulation with propagation vector 0.905 b* evolves while the original Mn induced modulation is suppressed and shifts from 0.78 b* to 0.81 b*. This points to a strong interference of Mn and Dy induced structural distortions in DyMnO3 besides a magnetic coupling between the Mn and Dy magnetic moments.Comment: submitted to Phys. Rev. B Rapid Communication

    Excitation hierarchy of the quantum sine-Gordon spin chain in strong magnetic field

    Full text link
    The magnetic excitation spectrum of copper pyrimidine dinitrate, a material containing S=1/2 antiferromagnetic chains with alternating g-tensor and the Dzyaloshinskii-Moriya interaction, and exhibiting a field-induced spin gap, is probed using submillimeter wave electron spin resonance spectroscopy. Ten excitation modes are resolved in the low-temperature spectrum, and their frequency-field diagram is systematically studied in magnetic fields up to 25 T. The experimental data are sufficiently detailed to make a very accurate comparison with predictions based on the quantum sine-Gordon field theory. Signatures of three breather branches and a soliton, as well as those of several multi-particle excitation modes are identified.Comment: 4 RevTeX pages, 3 figure

    Enhanced ferroelectric polarization by induced Dy spin-order in multiferroic DyMnO3

    Get PDF
    Neutron powder diffraction and single crystal x-ray resonant magnetic scattering measurements suggest that Dy plays an active role in enhancing the ferroelectric polarization in multiferroic DyMnO3 above TNDy = 6.5 K. We observe the evolution of an incommensurate ordering of Dy moments with the same periodicity as the Mn spiral ordering. It closely tracks the evolution of the ferroelectric polarization which reaches a maximum value of 0.2 muC/m^2. Below TNDy, where Dy spins order commensurately, the polarization decreases to values similar for those of TbMnO3
    • …
    corecore