630 research outputs found

    Determining Ages of APOGEE Giants with Known Distances

    Get PDF
    We present a sample of local red giant stars observed using the New Mexico State University 1 m telescope with the APOGEE spectrograph, for which we estimate stellar ages and the age distribution from the high-resolution spectroscopic stellar parameters and accurate distance measurements from Hipparcos. The high-resolution (R ~ 23,000), near infrared (H-band, 1.5-1.7 micron) APOGEE spectra provide measurements of the stellar atmospheric parameters (temperature, surface gravity, [M/H], and [alpha/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 40%. For red giants, the relatively rapid evolution of stars up the red giant branch allows the age to be constrained based on the mass. We examine methods of estimating age using both the mass-age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant star formation history (SFH). To improve the prior on the SFH, we use a hierarchical modeling approach to constrain the parameters of a model SFH from the age probability distribution functions of the data. The results of an alpha dependent Gaussian SFH model shows a clear relation between age and [alpha/M] at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we construct a full age probability distribution function and determine ages for individual stars. The age-metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ~ 0.5 dex spread in metallicity. For stars with ages < 1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.Comment: 14 page, 18 figures, accepted to ApJ with minor revisions, full electronic table of data available upon publicatio

    The HR 1614 moving group is not a dissolving cluster

    Get PDF
    The HR 1614 overdensity in velocity space and has for a long time been known as an old (~2 Gyr) and metal-rich ([Fe/H]~0.2) nearby moving group that has a dissolving cluster origin. The existence of such old and metal-rich groups in the solar vicinity is quite unexpected since the vast majority of nearby moving groups are known to be young. In the light of new and significantly larger data sets we aim to re-investigate the properties and origin of the HR 1614 moving group. To identify and characterise the HR 1614 moving group we use astrometric data from Gaia DR2; distances, extinction, and reddening corrections from the StarHorse code; elemental abundances from the GALAH and APOGEE spectroscopic surveys; and photometric metallicities from the SkyMapper survey. Bayesian ages were estimated for the SkyMapper stars. Since the Hercules stream is the closest kinematical structure to the HR 1614 moving group in velocity space, we use it for comparison purposes. Stars that are likely to be members of the two groups were selected based on their space velocities. The HR 1614 moving group is located mainly at negative U velocities, does not form an arch of constant energy in the U-V space and is tilted in V. The overdensity is not chemically homogeneous but that its stars exist at a wide range of both metallicities, ages, and elemental abundance ratios. They are essentially similar to what is observed in the Galactic thin and thick disks, a younger population (~3 Gyr) that is metal-rich (-0.2<[Fe/H]<0.4) and alpha-poor. It should therefore not be considered as a dissolving open cluster, or an accreted population. We suggest that HR 1614 has a complex origin that could be explained by combining several different mechanisms such as resonances with the Galactic bar and spiral structure, phase-mixing of dissolving spiral structure, and phase-mixing due to an external perturbation.Comment: Accepted for publication in A&

    Competition between electron pairing and phase coherence in superconducting interfaces

    Get PDF
    In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin–orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high- energy dxz/dyz bands in the quantum well, more apt to host superconductivity

    Arqueología en la cuenca inferior del Río Salado (Provincia de Santa Fe). Primeras aproximaciones al estudio de un sitio arqueológico con enterratorios múltiples

    Get PDF
    En este trabajo se da cuenta de las tareas llevadas a cabo en el sitio arqueológico Río Salado Coronda II, en la ciudad de Santo Tomé, provincia de Santa Fe. Los estudios realizados abren una nueva serie de expectativas arqueológicas para el área de la cuenca inferior del río Salado, la cual se mantuvo durante muchos años relegada en función de las investigaciones realizadas en los ambientes de influencia directa del río Paraná. El hallazgo por parte de vecinos en el barrio de Villa Adelina Este de la ciudad de Santo Tomé (provincia de Santa Fe) de ítems arqueológicos, derivó en el descubrimiento de un área de enterratorios múltiples, asociada a restos materiales que sugieren un uso particular de ese espacio por parte de las sociedades que lo ocuparon en el pasado, vinculado al sistema de creencias. Se presentan aquí los primeros resultados obtenidos del análisis del registro arqueológico del sitio mencionado. </p

    On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees

    Full text link
    In this paper, flow models of networks without congestion control are considered. Users generate data transfers according to some Poisson processes and transmit corresponding packet at a fixed rate equal to their access rate until the entire document is received at the destination; some erasure codes are used to make the transmission robust to packet losses. We study the stability of the stochastic process representing the number of active flows in two particular cases: linear networks and upstream trees. For the case of linear networks, we notably use fluid limits and an interesting phenomenon of "time scale separation" occurs. Bounds on the stability region of linear networks are given. For the case of upstream trees, underlying monotonic properties are used. Finally, the asymptotic stability of those processes is analyzed when the access rate of the users decreases to 0. An appropriate scaling is introduced and used to prove that the stability region of those networks is asymptotically maximized

    Defect detection and characterisation in composite materials using active IR thermography coupled with SVD analysis and thermal quadrupole modeling

    Get PDF
    Abstract In t his s tudy, a ctive i nfrared t hermography is us ed t o det ect and c haracterize def ects i n c arbon/epoxy c omposite plates. Defects are polymeric discs inserted between plies at different depths of the sample. The thermal excitation consists in a f inite t ime s tep us ing h alogen l amps. The t ransient t hermal m odeling pr ovides a one-dimensional analytical s olution through thermal quadrupoles. Finally an inversion procedure is carried out to estimate modeling unknown parameters, especially the depth and thermal resistance of the defect

    Noisy Kondo impurities

    Full text link
    The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with the conduction electrons spins of a host metal is the basic mechanism responsible for the increase of the resistance of an alloy such as Cu0.998{}_{0.998}Fe0.002{}_{0.002} at low temperature, as originally suggested by Kondo . This coupling has emerged as a very generic property of localized electronic states coupled to a continuum . The possibility to design artificial controllable magnetic impurities in nanoscopic conductors has opened a path to study this many body phenomenon in unusual situations as compared to the initial one and, in particular, in out of equilibrium situations. So far, measurements have focused on the average current. Here, we report on \textit{current fluctuations} (noise) measurements in artificial Kondo impurities made in carbon nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a test bench for one of the most important many-body theories of condensed matter in out of equilibrium situations and shed light on the noise properties of highly conductive molecular devices.Comment: minor differences with published versio

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap
    corecore