16 research outputs found

    Expression of Cu/Zn and Mn superoxide dismutases during bovine embryo development: influence of in vitro culture.

    Full text link
    peer reviewedTemporal pattern of expression of Cu/Zn and Mn superoxide dismutases (SODs) was investigated in bovine oocytes and embryos produced in vitro in two different culture conditions and in vivo after superovulation. SODs were examined at a transcriptional level in single oocytes and embryos by reverse transcriptase-polymerase chain reaction (RT-PCR) and, at a protein level, by Western blotting on pools of embryos. mRNA encoding Cu/Zn SOD were detected in in vitro bovine embryos throughout preattachment development as well as in in vivo derived morulae and blastocysts. Transcripts for Mn SOD gene were detected in most immature and in vitro matured oocytes as well as in some zygotes and 5- to 8-cell embryos while no transcript was found at the 9-to 16-cell stage in both culture conditions. In vitro embryonic expression of Mn SOD was detected earlier in the presence of serum. Half of the morulae showed the transcript if cultured with 5% serum while none without serum. At the blastocyst stage Mn SOD could be detected independently of culture conditions. For in vivo-derived embryos Mn SOD transcripts were detected both in morulae and blastocysts. Immunoblotting analyses revealed that Cu/Zn SOD and Mn SOD were also present at a protein level in in vitro-derived zygotes and blastocysts. Together these data demonstrate, for the first time, that Mn SOD is transcribed and that Cu/Zn and Mn SOD proteins are expressed in preimplantation bovine embryos. Finally, they suggest that Mn SOD transcription is altered by in vitro culture conditions

    Qualidade espermática durante a curva de resfriamento do sêmen suíno diluído em água de coco em pó visando sua criopreservação

    Get PDF
    A criopreservação seminal apresenta baixos resultados produtivos. Objetivou-se testar a Água de Coco em Pó (ACP-103®) como diluente de ressuspensão após a descongelação seminal e avaliar a qualidade espermática durante a curva de resfriamento até a descongelação do sêmen. Para isso, o sêmen de 15 reprodutores foi coletado uma vez por semana, incubado a 30 oC por 15 minutos, e em seguida diluído em Beltsville Thawing Solution – BTS (controle) ou em ACP-103®, e submetidos a uma curva de resfriamento lenta, onde foram feitas análises de vigor e motilidade em cada passo. O sêmen descongelado foi ressuspenso em seus respectivos diluentes e analisado quanto às características: vigor, motilidade, vitalidade, integridade acrossomal e funcionalidade da membrana. Durante as análises de vigor e motilidade que compõem a curva de resfriamento, e na descongelação, para as análises de vitalidade e membrana acrossomal intacta, observou-se que não houve diferença significativa entre os tratamentos. Já após a descongelação, o BTS apresentou melhores resultados de vigor, motilidade espermática e funcionalidade da membrana. No entanto, a curva de resfriamento e o ACP-103® podem ser utilizadas no protocolo de criopreservação do sêmen suíno, visto que ambas asseguraram qualidade da viabilidade espermática

    Impact of pro-oxidant agents on the morula-blastocyst transition in bovine embryos.

    Full text link
    Exposing day 5 bovine morulae to reactive oxygen species induces a delayed degeneration of some blastocysts on day 8 post-insemination (pi) but without affecting the blastocyst rates. The aim of this study was to characterize the resisting and the degenerating population of blastocysts. The kinetics of degeneration of the embryos exposed to the two pro-oxidant agents: 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and buthionine sulfoximine (BSO) was evaluated using time-lapse cinematography. With both agents the first signs of degeneration appeared at day 7.5 pi but the duration of the degeneration process was shorter in presence of AAPH than BSO (4.2 vs. 12.5 hr, ANOVA, P < 0.05). The resisting blastocysts derived from morulae with a larger diameter (mean diameter: 161 vs. 154 microm, ANOVA, P < 0.05) and showed an earlier cavitation (135 vs. 142 hpi, P < 0.05) than the degenerating ones. The profile of protein neosynthesis at day 7 was not affected by the treatment. The proportion of male embryos was more important in the resisting than in the degenerating population (70 vs. 55%, chi2, P < 0.05) especially when the stress was induced by AAPH. The quality of the resisting embryos, measured by the total cell number and the rate of apoptosis, did not seem to be affected when compared to control embryos. In conclusion, resistance to oxidative stress seems related to the kinetics of development and/or the sex of the embryos. Resisting embryos apparently display a quality similar to untreated embryos

    Addition of beta-mercaptoethanol or Trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents.

    No full text
    This study was conducted to evaluate the effect of beta-mercaptoethanol (a stimulator of glutathione synthesis) and Trolox (an hydrosoluble analogue of Vitamin E) on bovine embryos cultured from the morula stage (Day 5 post-insemination; pi) under oxidative stress conditions. Culture of embryos with increased doses of Trolox showed a dose-dependent embryotoxicity on Day 8 pi. The use of 400 microM Trolox as well as beta-mercaptoethanol at 100 microM prevented at least partly (P < 0.05) the prooxidant-induced blastocyst degeneration on Day 8. Hatching rates of surviving blastocysts were significantly increased by both antioxidants and beta-mercaptoethanol alone improved their mean cell numbers, which was significant in the ICM (P < 0.05). Analysis of their effect on Day 7 pi showed that both the antioxidants significantly reduced the prooxidant-induced apoptosis and beta-mercaptoethanol diminished the physiological level of apoptosis as well as it stimulated the glutathione synthesis (P < 0.05). In addition, a comparison between in vitro- and in vivo-produced embryos showed that the levels of apoptosis were similar at the same age post-insemination (morulae and blastocysts) but increased steadily with the embryonic age in in vitro ones.In conclusion, beta-mercaptoethanol and Trolox added separately from the morula stage protected embryos against oxidative stress and improved the quality of the resulting blastocysts

    Effect of prooxidant agents added at the morula/blastocyst stage on bovine embryo development, cell death and glutathione content

    No full text
    Two prooxidant agents, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH), a generator of free radicals in the culture medium, and buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, were used to reinforce from the morula stage (day 5 post-insemination, p.i.) the oxidative stress encountered by bovine embryos in culture. Exposure to increasing concentrations of both prooxidants from the morula stage did not affect blastocyst formation but some blastocysts were found degenerated on day 8 in a dose-dependent manner (0, 0.001, 0.01, 0.1 mM AAPH gave respectively 0, 10%, 32%, 48% degeneration, while 0, 0.1, 0.2, 0.4 mM BSO led respectively to 0, 14%, 30%, 41% degeneration). Hatching rates and cell numbers of surviving blastocysts were not affected. Morulae and early blastocysts exposed from day 5 to day 6 p.i. appeared more resistant than expanded blastocysts (75-80% survival vs 20-65%; p <0.05). Treatment with BSO significantly decreased the level of reduced glutathione in day 7 blastocysts (0.02 vs 0.42 pmol per embryo in the control) while AAPH had no effect (0.38 pmol per embryo). The proportion of cells showing membrane lesions was increased in degenerated blastocysts from day 7.5 p.i. In AAPH-treated, but not in BSO-treated embryos, cell membrane permeabilisation seems to occur before blastocyst degeneration. DNA fragmentation evaluated by the TUNEL technique was increased in day 7 blastocysts by both prooxidants (2.8 ± 0.4 in the control group vs 4.5 ± 0.4 and 6.0 ± 0.4 respectively in the AAPH- and BSO-treated groups). Addition of an inhibitor of caspase-3, DEVD-CHO, partially prevented DNA fragmentation, indicating that prooxidant treatment induced a caspase-dependent pathway of apoptosis.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore