1,490 research outputs found

    Pauli blocking effects and Cooper triples in three-component Fermi gases

    Full text link
    We investigate the effect of Pauli blocking on universal two- and three-body states in the medium. Their corresponding energies are extracted from the poles of two- and three-body in-medium scattering amplitudes. Compared to the vacuum, the binding of dimer and trimer states is reduced by the medium effects. In two-body scattering, the well-known physics of Cooper pairs is recovered. In the three-body sector, we find a new class of positive energy poles which can be interpreted as Cooper triples.Comment: 19 pages, 9 figures, discussion expanded, final versio

    Light nuclei quasiparticle energy shift in hot and dense nuclear matter

    Full text link
    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\"odinger equation for the AA-particle cluster is obtained accounting for the effects of the correlated medium such as self-energy, Pauli blocking and Bose enhancement. Similar to the single-baryon states (free neutrons and protons), the light elements (2≤A≤42 \le A \le 4, internal quantum state ν\nu) are treated as quasiparticles with energies EA,ν(P⃗;T,nn,np)E_{A,\nu}(\vec P; T, n_n,n_p). These energies depend on the center of mass momentum P⃗\vec P, as well as temperature TT and the total densities nn,npn_n,n_p of neutrons and protons, respectively. No β\beta equilibrium is considered so that nn,npn_n, n_p (or the corresponding chemical potentials μn,μp\mu_n, \mu_p) are fixed independently. For the single nucleon quasiparticle energy shift, different approximate expressions such as Skyrme or relativistic mean field approaches are well known. Treating the AA-particle problem in appropriate approximations, results for the cluster quasiparticle shifts are given. Properties of dense nuclear matter at moderate temperatures in the subsaturation density region considered here are influenced by the composition. This in turn is determined by the cluster quasiparticle energies, in particular the formation of clusters at low densities when the temperature decreases, and their dissolution due to Pauli blocking as the density increases. Our finite-temperature Green function approach covers different limiting cases: The low-density region where the model of nuclear statistical equilibrium and virial expansions can be applied, and the saturation density region where a mean field approach is possible

    Theory of Diamagnetism in the Pseudogap Phase: Implications from the Self energy of Angle Resolved Photoemission

    Full text link
    In this paper we apply the emerging- consensus understanding of the fermionic self energy deduced from angle resolved photoemisssion spectroscopy (ARPES) experiments to deduce the implications for orbital diamagnetism in the underdoped cuprates. Many theories using many different starting points have arrived at a broadened BCS-like form for the normal state self energy associated with a d-wave excitation gap, as is compatible with ARPES data. Establishing compatibility with the f-sum rules, we show how this self energy, along with the constraint that there is no Meissner effect in the normal phase are sufficient to deduce the orbital susceptibility. We conclude, moreover, that diamagnetism is large for a d-wave pseudogap. Our results should apply rather widely to many theories of the pseudogap, independent of the microscopic details.Comment: 15 pages, 8 figure

    Origin of electron-hole asymmetry in the scanning tunneling spectrum of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We have developed a material specific theoretical framework for modelling scanning tunneling spectroscopy (STS) of high temperature superconducting materials in the normal as well as the superconducting state. Results for Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} (Bi2212) show clearly that the tunneling process strongly modifies the STS spectrum from the local density of states (LDOS) of the dx2−y2d_{x^2-y^2} orbital of Cu. The dominant tunneling channel to the surface Bi involves the dx2−y2d_{x^2-y^2} orbitals of the four neighbouring Cu atoms. In accord with experimental observations, the computed spectrum displays a remarkable asymmetry between the processes of electron injection and extraction, which arises from contributions of Cu dz2d_{z^2} and other orbitals to the tunneling current.Comment: 5 pages, 4 figures, published in PR

    Normal Modes of a Vortex in a Trapped Bose-Einstein Condensate

    Full text link
    A hydrodynamic description is used to study the normal modes of a vortex in a zero-temperature Bose-Einstein condensate. In the Thomas-Fermi (TF) limit, the circulating superfluid velocity far from the vortex core provides a small perturbation that splits the originally degenerate normal modes of a vortex-free condensate. The relative frequency shifts are small in all cases considered (they vanish for the lowest dipole mode with |m|=1), suggesting that the vortex is stable. The Bogoliubov equations serve to verify the existence of helical waves, similar to those of a vortex line in an unbounded weakly interacting Bose gas. In the large-condensate (small-core) limit, the condensate wave function reduces to that of a straight vortex in an unbounded condensate; the corresponding Bogoliubov equations have no bound-state solutions that are uniform along the symmetry axis and decay exponentially far from the vortex core.Comment: 15 pages, REVTEX, 2 Postscript figures, to appear in Phys. Rev. A. We have altered the material in Secs. 3B and 4 in connection with the normal modes that have |m|=1. Our present treatment satisfies the condition that the fundamental dipole mode of a condensate with (or without) a vortex should have the bare frequency $\omega_\perp

    Benchmarking GW against exact diagonalization for semi-empirical models

    Get PDF
    We calculate groundstate total energies and single-particle excitation energies of seven pi conjugated molecules described with the semi-empirical Pariser-Parr-Pople (PPP) model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW captures around 65% of the groundstate correlation energy. The lowest lying excitations are overscreened by GW leading to an underestimation of electron affinities and ionization potentials by approximately 0.15 eV corresponding to 2.5%. One-shot G_0W_0 calculations starting from Hartree-Fock reduce the screening and improve the low-lying excitation energies. The effect of the GW self-energy on the molecular excitation energies is shown to be similar to the inclusion of final state relaxations in Hartree-Fock theory. We discuss the break down of the GW approximation in systems with short range interactions (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene.Comment: 9 pages, 5 figures, accepted for publication in Phys. Rev.

    Bragg Spectroscopy of Cold Atomic Fermi Gases

    Full text link
    We propose a Bragg spectroscopy experiment to measure the onset of superfluid pairing in ultracold trapped Fermi gases. In particular, we study two component Fermi gases in the weak coupling BCS and BEC limits as well as in the strong coupling unitarity limit. The low temperature Bragg spectrum exhibits a gap directly related to the pair-breaking energy. Furthermore, the Bragg spectrum has a large maximum just below the critical temperature when the gas is superfluid in the BCS limit. In the unitarity regime, we show how the pseudogap in the normal phase leads to a significant suppression of the low frequency Bragg spectrum.Comment: 8 pages, 9 figures. Typos corrected. Reference update

    Kinetic Theory for Electron Dynamics Near a Positive Ion

    Full text link
    A theoretical description of time correlation functions for electron properties in the presence of a positive ion of charge number Z is given. The simplest case of an electron gas distorted by a single ion is considered. A semi-classical representation with a regularized electron - ion potential is used to obtain a linear kinetic theory that is asymptotically exact at short times. This Markovian approximation includes all initial (equilibrium) electron - electron and electron - ion correlations through renormalized pair potentials. The kinetic theory is solved in terms of single particle trajectories of the electron - ion potential and a dielectric function for the inhomogeneous electron gas. The results are illustrated by a calculation of the autocorrelation function for the electron field at the ion. The dependence on charge number Z is shown to be dominated by the bound states of the effective electron - ion potential. On this basis, a very simple practical representation of the trajectories is proposed and shown to be accurate over a wide range including strong electron - ion coupling. This simple representation is then used for a brief analysis of the dielectric function for the inhomogeneous electron gas.Comment: 30 pages, 5 figures, submitted to Journal of Statistical Mechanics: Theory and Experimen

    Connecting scaling with short-range correlations

    Get PDF
    We reexamine several issues related to the physics of scaling in electron scattering from nuclei. A basic model is presented in which an assumed form for the momentum distribution having both long- and short-range contributions is incorporated in the single-particle Green function. From this one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction and short-range repulsion, and can obtain the density-density polarization propagator and hence the electromagnetic response and scaling function. For the latter, the shape of the scaling function and how it approaches scaling as a function of momentum transfer are both explored.Comment: 24 pages, 15 figures. A reference has been corrected and update

    The effect of a velocity barrier on the ballistic transport of Dirac fermions

    Full text link
    We propose a novel way to manipulate the transport properties of massless Dirac fermions by using velocity barriers, defining the region in which the Fermi velocity, vFv_{F}, has a value that differs from the one in the surrounding background. The idea is based on the fact that when waves travel accross different media, there are boundary conditions that must be satisfied, giving rise to Snell's-like laws. We find that the transmission through a velocity barrier is highly anisotropic, and that perfect transmission always occurs at normal incidence. When vFv_{F} in the barrier is larger that the velocity outside the barrier, we find that a critical transmission angle exists, a Brewster-like angle for massless Dirac electrons.Comment: 4.3 pages, 5 figure
    • …
    corecore