1,254 research outputs found

    3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

    Full text link
    We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction for I-131 single photon emission computed tomography (SPECT). The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the forward/backprojector. In the present implementation of MCS, a simple multiple window-based estimate is used for the initial iterations and in the later iterations the Monte Carlo estimate is used for several iterations before it is updated. For I-131, MCS was evaluated and compared with triple energy window (TEW) scatter compensation using simulation studies of a mathematical phantom and a clinically realistic voxel-phantom. Even after just two Monte Carlo updates, excellent agreement was found between the MCS estimate and the true scatter distribution. Accuracy and noise of the reconstructed images were superior with MCS compared to TEW. However, the improvement was not large, and in some cases may not justify the large computational requirements of MCS. Furthermore, it was shown that the TEW correction could be improved for most of the targets investigated here by applying a suitably chosen scaling factor to the scatter estimate. Finally clinical application of MCS was demonstrated by applying the method to an I-131 radioimmunotherapy (RIT) patient study.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85854/1/Fessler47.pd

    3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

    Full text link
    We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction. The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the forward/backprojector. In the present implementation of MCS, a simple multiple window-based estimate is used for the initial iterations and in the later iterations the Monte Carlo estimate is used for several iterations before it is updated. For I-131, MCS was evaluated and compared with triple energy window (TEW) scatter compensation using simulation studies of a mathematical phantom and a clinically realistic voxel-phantom. Even after just two Monte Carlo runs, excellent agreement was found between the MCS estimate and the true scatter distribution. Accuracy and noise of the reconstructed images were superior with MCS compared to TEW. However, the improvement was not large, and in some cases may not justify the large computational requirements of MCS. Finally clinical application of MCS was demonstrated by applying the method to a radioimmunotherapy (RIT) patient study.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85865/1/Fessler201.pd

    Training End-to-End Unrolled Iterative Neural Networks for SPECT Image Reconstruction

    Full text link
    Training end-to-end unrolled iterative neural networks for SPECT image reconstruction requires a memory-efficient forward-backward projector for efficient backpropagation. This paper describes an open-source, high performance Julia implementation of a SPECT forward-backward projector that supports memory-efficient backpropagation with an exact adjoint. Our Julia projector uses only ~5% of the memory of an existing Matlab-based projector. We compare unrolling a CNN-regularized expectation-maximization (EM) algorithm with end-to-end training using our Julia projector with other training methods such as gradient truncation (ignoring gradients involving the projector) and sequential training, using XCAT phantoms and virtual patient (VP) phantoms generated from SIMIND Monte Carlo (MC) simulations. Simulation results with two different radionuclides (90Y and 177Lu) show that: 1) For 177Lu XCAT phantoms and 90Y VP phantoms, training unrolled EM algorithm in end-to-end fashion with our Julia projector yields the best reconstruction quality compared to other training methods and OSEM, both qualitatively and quantitatively. For VP phantoms with 177Lu radionuclide, the reconstructed images using end-to-end training are in higher quality than using sequential training and OSEM, but are comparable with using gradient truncation. We also find there exists a trade-off between computational cost and reconstruction accuracy for different training methods. End-to-end training has the highest accuracy because the correct gradient is used in backpropagation; sequential training yields worse reconstruction accuracy, but is significantly faster and uses much less memory.Comment: submitted to IEEE TRPM

    Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from (1) penalized likelihood employing CT-side information-based regularization (PL-CT), (2) penalized likelihood with edge preserving regularization (no CT) and (3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with (4) ordered subset expectation maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the 'truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets without sacrificing the accuracy of total target activity estimation. The method is best suited for data acquired on hybrid systems where SPECT-CT misregistration is minimized. To demonstrate clinical application, the PL reconstruction with CT-based regularization was applied to data from a patient who underwent SPECT/CT imaging for tumor dosimetry following I-131 radioimmunotherapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85409/1/pmb10_9_007.pd

    Regularized B1+ MAP Estimation in MRI

    Full text link
    A challenge in MR imaging is that RF transmit coils produce non-uniform field strengths, so an excitation pulse will produce tip angles that vary substantially from the desired tip angle over the field of view. For parallel transmit excitation (using a coil array), it is important to have a map of the B1+ field strength (and phase) for RF pulse design. Standard B1+ map estimation methods perform poorly in image regions with low spin density. This paper describes a regularized method for B1+ map estimation using MR scans for each coil and for two or more tip angles. Using these scans and exploiting the fact that maps are generally smooth, the iterative algorithm estimates both the magnitude and phase at each coil's B1+ map. Results from both simulations and real MR data show significant improvements over conventional unregularized methods for B1 + mapping.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85868/1/Fessler227.pd

    Quantitative I-131 SPECT Reconstruction using CT Side Information from Hybrid Imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from 1) penalized likelihood employing CT-side information based regularization (PL-CT); 2) penalized likelihood with edge preserving regularization (no CT); 3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with 4) Ordered Subset Expectation Maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect (misregistered) side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the `truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets wi- - thout sacrificing the accuracy of total target activity estimation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85862/1/Fessler243.pd

    Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT

    Full text link
    We present the results of using iterative reconstruction of dual-energy CT (DECT) to perform accurate CT-based attenuation correction (CTAC) for PET emission images. Current methods, such as bilinear scaling, introduce quantitative errors in the PET emission image for bone, metallic implants, and contrast agents. DECT has had limited use in the past for quantitative CT imaging due to increased patient dose and high noise levels in the decoupled CT basis-material images. Reconstruction methods that model the acquisition physics impose a significant computational burden due to the large image matrix size (typically 512 Ă— 512). For CTAC, however, three factors make DECT feasible: (1) a smaller matrix is needed for the transmission image, which reduces the noise per pixel, (2) a smaller matrix significantly accelerates an iterative CT reconstruction algorithm, (3) the monoenergetic transmission image at 511 keV is the sum of the two decoupled basis-material images. Initial results using a 128 Ă— 128 matrix size for a test object comprised of air, soft tissue, dense bone, and a mixture of tissue and bone demonstrate a significant reduction of bias using DECT (from 20% to ?0% for the tissue/bone mixture). FBP reconstructed images, however, have significant noise. Noise levels are reduced from ?8% to ?3% by the use of PWLS reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85861/1/Fessler203.pd

    Update on HE vs UHE Collimation for Focal Total-activity Quantification in I-131 SPECT Using 3D OSEM

    Full text link
    We calibrated a scintillation camera for the counts-to-activity conversion factor, CF, by measuring a phantom consisting of a sphere containing a known 131-I activity placed within an elliptical cylinder. Within a 3D OSEM reconstruction algorithm, we employed a depth-dependent detector-response model based on smooth fits to the point-source-response function. Using the ultra-high-energy (UHE) collimator and 100 iterations, the recovery coefficient, RC, appeared to be 1 for any sphere volume down to 20 cm3. The CF changed only a small amount as the background-over-target activity concentration ratio, b, increased for both UHE and high-energy (HE) collimation. Tests of activity quantification were carried out with an anthropomorphic phantom simulating a 100 cm3 spherical tumor centrally located inferior to the lungs. With 3D OSEM reconstruction, using the global-average CF and no RC-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations was -7.4% with UHE collimation, and -9.4% with HE collimation. For comparison, with 1D SAGE reconstruction, using the CF corresponding to the experimental estimate of b and RC-based correction, the mean bias was worse, -10.7% for UHE collimation, but better, -4.3 %, for HE collimation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85907/1/Fessler190.pd

    Determining Total I-131 Activity Within a VoI Using SPECT, a UHE Collimator, OSEM, and a Constant Conversion Factor

    Full text link
    Accurate determination of activity within a volume of interest is needed during radiopharmaceutical therapies. Single-photon emission computed tomography(SPECT) is employed but requires a method to convert counts to activity. We use a phantom-based conversion; that is, we image an elliptical cylinder containing a sphere that has a known amount of 131-I activity inside. The regularized space alternating generalized expectation (SAGE) algorithm employing a strip-integral detector-response model was employed for reconstruction in previous patient evaluations. With that algorithm and a high-energy collimator, the estimates for sphere activity varied with changes in: 1) the level of uniform background activity in the cylinder; 2) the image resolution due to different values of the radius of rotation R; and 3) the volume of the sphere. When one used those to convert reconstructed counts within a patient tumor into an activity estimate, the resultant value may have been in error because of patient-phantom mismatch. As a potential remedy, in this paper, we use an ordered subsets expectation maximization (OSEM) algorithm with a 3-D depth-dependent detector-response model and an ultra-high-energy collimator. Results after 100 OSEM iterations and using a maximum counts registration show the estimates for sphere activity: 1) have a dependence on the level of background activity with a slope whose absolute magnitude is typically only 0.37 times that with SAGE; 2) are independent of R; and 3) are independent of sphere volume down to and including a sphere volume of 20 cm3. We conclude that using a global-average conversion factor to relate counts to activity and no volume-based correction might be reasonable with OSEM. For a test of that conclusion, target activity is estimated for an anthropomorphic phantom containing a 100 cm3 spherical tumor centrally located inferior to the lungs. With OSEM-based quantification, using: 1) a global-average conversion factor and 2) no volume-based correction, mean bias in the simulated-tumor activity estimate over 20 realizations is -7.37% (relative standard deviation =5.93%). With SAGE-based quantification using: 1) the conversion factor corresponding to the experimental estimate of ba- ckground and 2) volume-based correction, the mean bias is -10.7% (relative standard deviation =2.37%). The mean bias is smaller in a statistically significant way and relative standard deviation is not more than a factor of 2.5 bigger with OSEM compared to SAGE. In addition, with OSEM, a patient image apparently shows more highly resolved features, and the activity estimates for two tumors are increased by an average of 10%, relative to results with SAGE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85985/1/Fessler57.pd
    • …
    corecore