85 research outputs found

    Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance.

    Get PDF
    The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt\u27s lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents

    siRNA-mediated off-target gene silencing triggered by a 7 nt complementation

    Get PDF
    A growing body of evidence suggests that siRNA could generate off-target effects through different mechanisms. However, the full impact of off-target gene regulation on phenotypic induction and accordingly on data interpretation in the context of large-scale siRNA library screen has not been reported. Here we report on off-target gene silencing effects observed in a large-scale knockdown experiment designed to identify novel regulators of the HIF-1 pathway. All of the three ā€˜top hitsā€™ from our screen have been demonstrated to result from off-target gene silencing. Two of the three ā€˜siRNA hitsā€™ were found to directly trigger down-regulation of hif-1Ī± mRNA through a 7 nt motif, AGGCAGT, that is present in both the hif-1Ī± mRNA and the siRNAs. Further analysis revealed that the generation of off-target gene silencing via this 7 nt motif depends on the characteristics of the target mRNA, including the sequence context surrounding the complementary region, the position of the complementary region in the mRNA and the copy number of the complementary region. Interestingly, the off-target siRNA against hif-1Ī± was also shown to trigger mRNA degradation with high probability of other genes that possess multiple copies of the AGGCAGT motif in the 3ā€²-untranslated region. Lessons learned from this study will be a valuable asset to aid in designing siRNAs with more stringent target selectivity and improving ā€˜hits-follow-upā€™ strategies for future large-scale knockdown experiments

    Drugging the undruggable RAS: Mission Possible?

    Get PDF
    Despite more than three decades of intensive effort, no effective pharmacologic inhibitors of the Ras oncoproteins have reached the clinic, prompting the widely held perception that Ras proteins are ā€œundruggableā€. However, there is renewed hope that this is not the case. In this review, we summarize the progress and promise of five key directions. First, we focus on the prospects of direct inhibitors of Ras. Second, we revisit the issue of whether blocking Ras membrane association is a viable approach. Third, we assess the status of targeting Ras downstream effector signalling, arguably the most favourable current direction. Fourth, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, Ras-mediated changes in cell metabolism have recently been described. Can these changes be exploited for new therapeutic directions? We conclude with perspectives on how additional complexities, not yet fully understood, may impact each of these approaches

    BCL-2 AND IAP PROTEINS AS POTENTIAL DRUG TARGETS

    No full text

    Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus

    No full text
    Kaposi sarcoma-associated herpes virus (KSHV) contains a gene that has functional and sequence homology to the apoptotic Bcl-2 family of proteins [Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J. & Chang, Y. (1997) Nat. Med. 3, 293ā€“298]. The viral Bcl-2 protein promotes survival of infected cells and may contribute to the development of Kaposi sarcoma tumors [Boshoff, C. & Chang, Y. (2001) Annu. Rev. Med. 52, 453ā€“470]. Here we describe the solution structure of the viral Bcl-2 homolog from KSHV. Comparison of the KSHV Bcl-2 structure to that of Bcl-2 and Bcl-x(L) shows that although the overall fold is the same, there are key differences in the lengths of the helices and loops. Binding studies on peptides derived from the Bcl-2 homology region 3 of proapoptotic family members indicate that the specificity of the viral protein is very different from what was previously observed for Bcl-x(L) and Bcl-2, suggesting that the viral protein has evolved to have a different mechanism of action than the host proteins

    NMR-based screening in drug discovery

    No full text
    • ā€¦
    corecore