5 research outputs found
Transverse optical Josephson plasmons, equations of motion
A detailed calculation is presented of the dielectric function in
superconducttors consisting of two Josephson coupled superconducting layers per
unit cell, taking into account the effect of finite compressibility of the
electron fluid. From the model it follows, that two longitudinal, and one
transverse optical Josephson plasma resonance exist in these materials, for
electric field polarization perpendicular to the planes. The latter mode
appears as a resonance in the transverse dielectric function, and it couples
directly to the electrical field vector of infrared radiation. A shift of all
plasma frequencies, and a reduction of the intensity of the transverse optical
Josephson plasmon is shown to result from the finite compressibility of the
electron fluid.Comment: 17 pages, ReVTeX, 7 figures in eps forma
Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential
We report on the results of molecular dynamics simulation (MD) studies of the
classical two-dimensional electron crystal in the presence disorder. Our study
is motivated by recent experiments on this system in modulation doped
semiconductor systems in very strong magnetic fields, where the magnetic length
is much smaller than the average interelectron spacing , as well as by
recent studies of electrons on the surface of helium. We investigate the low
temperature state of this system using a simulated annealing method. We find
that the low temperature state of the system always has isolated dislocations,
even at the weakest disorder levels investigated. We also find evidence for a
transition from a hexatic glass to an isotropic glass as the disorder is
increased. The former is characterized by quasi-long range orientational order,
and the absence of disclination defects in the low temperature state, and the
latter by short range orientational order and the presence of these defects.
The threshold electric field is also studied as a function of the disorder
strength, and is shown to have a characteristic signature of the transition.
Finally, the qualitative behavior of the electron flow in the depinned state is
shown to change continuously from an elastic flow to a channel-like, plastic
flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for
publication in Phys. Rev. B., HAF94MD