504 research outputs found

    Theory of Phonon Shakeup Effects on Photoluminescence from the Wigner Crystal in a Strong Magnetic Field

    Full text link
    We develop a method to compute shakeup effects on photoluminescence from a strong magnetic field induced two-dimensional Wigner crystal. Only localized holes are considered. Our method treats the lattice electrons and the tunneling electron on an equal footing, and uses a quantum-mechanical calculation of the collective modes that does not depend in any way on a harmonic approximation. We find that shakeup produces a series of sidebands that may be identified with maxima in the collective mode density of states, and definitively distinguishes the crystal state from a liquid state in the absence of electron-hole interaction. In the presence of electron-hole interaction, sidebands also appear in the liquid state coming from short-range density fluctuations around the hole. However, the sidebands in the liquid state and the crystal state have different qualitative behaviors. We also find a shift in the main luminescence peak, that is associated with lattice relaxation in the vicinity of a vacancy. The relationship of the shakeup spectrum with previous mean-field calculations is discussed.Comment: 14 pages, uuencoded postscript file for entire paper, also available at (click phd14) http://rainbow.uchicago.edu/~ldz/paper/paper.htm

    Diluted Graphene Antiferromagnet

    Full text link
    We study RKKY interactions between local magnetic moments for both doped and undoped graphene. We find in both cases that the interactions are primarily ferromagnetic for moments on the same sublattice, and antiferromagnetic for moments on opposite sublattices. This suggests that at sufficiently low temperatures dilute magnetic moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. We find that in the undoped case one expects no net magnetic moment, and demonstrate numerically that this effect generalizes to ribbons where the magnetic response is strongest at the edge, suggesting the possibility of an unusual spin-transfer device. For doped graphene we find that moments at definite lattice sites interact over longer distances than those placed in interstitial sites of the lattice (1/R21/R^2 vs. 1/R31/R^3) because the former support a Kohn anomaly that is suppressed in the latter due to the absence of backscattering.Comment: 5 pages, two figures include

    Strongly inhibited transport of a 1D Bose gas in a lattice

    Full text link
    We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of 1D atomic Bose gas, providing a possible explanation for our observations.Comment: 5 pages, 4 figure

    Local density of states of electron-crystal phases in graphene in the quantum Hall regime

    Full text link
    We calculate, within a self-consistent Hartree-Fock approximation, the local density of states for different electron crystals in graphene subject to a strong magnetic field. We investigate both the Wigner crystal and bubble crystals with M_e electrons per lattice site. The total density of states consists of several pronounced peaks, the number of which in the negative energy range coincides with the number of electrons M_e per lattice site, as for the case of electron-solid phases in the conventional two-dimensional electron gas. Analyzing the local density of states at the peak energies, we find particular scaling properties of the density patterns if one fixes the ratio nu_N/M_e between the filling factor nu_N of the last partially filled Landau level and the number of electrons per bubble. Although the total density profile depends explicitly on M_e, the local density of states of the lowest peaks turns out to be identical regardless the number of electrons M_e. Whereas these electron-solid phases are reminiscent to those expected in the conventional two-dimensional electron gas in GaAs heterostructures in the quantum Hall regime, the local density of states and the scaling relations we highlight in this paper may be, in graphene, directly measured by spectroscopic means, such as e.g. scanning tunneling microscopy.Comment: 8 pages, 7 figures; minor correction

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure

    Signature of Quantum Hall Effect Skyrmions in Tunneling: A Theoretical Study

    Full text link
    We present a theoretical study of the I−VI-V tunneling characteristic between two parallel two-dimensional electron gases in a perpendicular magnetic field when both are near filling factor ν=1\nu=1. Finite-size calculations of the single-layer spectral functions in the spherical geometry and analytical expressions for the disk geometry in the thermodynamic limit show that the current in the presence of skyrmions reflects in a direct way their underlying structure. It is also shown that fingerprints of the electron-electron interaction pseudopotentials are present in such a current.Comment: 4 pages, 1 figur

    Statistics of skyrmions in Quantum Hall systems

    Full text link
    We analyze statistical interactions of skyrmions in the quantum Hall system near a critical filling fraction in the framework of the Ginzburg-Landau model. The phase picked up by the wave-function during an exchange of two skyrmions close to ν=1/(2n+1)\nu=1/(2n+1) is π[S+1/2(2n+1)]\pi[S+1/2(2n+1)], where SS is the skyrmion's spin. In the same setting an exchange of two fully polarized vortices gives rise to the phase π/(2n+1)\pi/(2n+1). Skyrmions with odd and even numbers of reversed spins have different quantum statistics. Condensation of skyrmions with an even number of reversed spins leads to filling fractions with odd denominators, while condensation of those with an odd number of reversed spins gives rise to filling fractions with even denominators.Comment: 6 pages in Latex. addendum - skyrmions with odd or even number of reversed spins have different quantum statistics. They condense to form respectively even or odd denominator filling fraction state

    Collective Modes of Soliton-Lattice States in Double-Quantum-Well Systems

    Full text link
    In strong perpendicular magnetic fields double-quantum-well systems can sometimes occur in unusual broken symmetry states which have interwell phase coherence in the absence of interwell hopping. When hopping is present in such systems and the magnetic field is tilted away from the normal to the quantum well planes, a related soliton-lattice state can occur which has kinks in the dependence of the relative phase between electrons in opposite layers on the coordinate perpendicular to the in-plane component of the magnetic field. In this article we evaluate the collective modes of this soliton-lattice state in the generalized random-phase aproximation. We find that, in addition to the Goldstone modes associated with the broken translational symmetry of the soliton-lattice state, higher energy collective modes occur which are closely related to the Goldstone modes present in the spontaneously phase-coherent state. We study the evolution of these collective modes as a function of the strength of the in-plane magnetic field and comment on the possibility of using the in-plane field to generate a finite wave probe of the spontaneously phase-coherent state.Comment: REVTEX, 37 pages (text) and 15 uuencoded postscript figure

    Dynamical matrix of two-dimensional electron crystals

    Full text link
    In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to get the dynamical matrix of these crystals from a calculation of the density response function performed in the Generalized Random Phase Approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11 postscripts figure
    • …
    corecore