3,259 research outputs found
Third edge for a graphene nanoribbon: A tight-binding model calculation
The electronic and transport properties of an extended linear defect embedded
in a zigzag nanoribbon of realistic width are studied, within a tight binding
model approach. Our results suggest that such defect profoundly modify the
properties of the nanoribbon, introducing new conductance quantization values
and modifying the conductance quantization thresholds. The linear defect along
the nanoribbon behaves as an effective third edge of the system, which shows a
metallic behavior, giving rise to new conduction pathways that could be used in
nanoscale circuitry as a quantum wire.Comment: 6 pages, 6 figures. Two new figures and a few references adde
Noise properties of two single electron transistors coupled by a nanomechanical resonator
We analyze the noise properties of two single electron transistors (SETs)
coupled via a shared voltage gate consisting of a nanomechanical resonator.
Working in the regime where the resonator can be treated as a classical system,
we find that the SETs act on the resonator like two independent heat baths. The
coupling to the resonator generates positive correlations in the currents
flowing through each of the SETs as well as between the two currents. In the
regime where the dynamics of the resonator is dominated by the back-action of
the SETs, these positive correlations can lead to parametrically large
enhancements of the low frequency current noise. These noise properties can be
understood in terms of the effects on the SET currents of fluctuations in the
state of a resonator in thermal equilibrium which persist for times of order
the resonator damping time.Comment: Accepted for publication in Phys. Rev.
Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides
We study the coherent flow of interacting Bose-condensed atoms in mesoscopic
waveguide geometries. Analytical and numerical methods, based on the mean-field
description of the condensate, are developed to study both stationary as well
as time-dependent propagation processes. We apply these methods to the
propagation of a condensate through an atomic quantum dot in a waveguide,
discuss the nonlinear transmission spectrum and show that resonant transport is
generally suppressed due to an interaction-induced bistability phenomenon.
Finally, we establish a link between the nonlinear features of the transmission
spectrum and the self-consistent quasi-bound states of the quantum dot.Comment: 23 pages, 16 figure
Collective Charge Fluctuations in Single-Electron Processes on Nano-Networks
Using numerical modeling we study emergence of structure and
structure-related nonlinear conduction properties in the self-assembled
nanoparticle films. Particularly, we show how different nanoparticle networks
emerge within assembly processes with molecular bio-recognition binding. We
then simulate the charge transport under voltage bias via single-electron
tunnelings through the junctions between nanoparticles on such type of
networks. We show how the regular nanoparticle array and topologically
inhomogeneous nanonetworks affect the charge transport. We find long-range
correlations in the time series of charge fluctuation at individual
nanoparticles and of flow along the junctions within the network. These
correlations explain the occurrence of a large nonlinearity in the simulated
and experimentally measured current-voltage characteristics and non-Gaussian
fluctuations of the current at the electrode.Comment: 10 pages, 7 figure
Atlas of high resolution infrared spectra of carbon dioxide
An atlas of long-path room-temperature absorption spectra of carbon dioxide is presented for the spectral intervals 1830-2100 cm, 2395-2680 cm, and 3140-3235 cm. The spectral data were recorded at high signal to noise with the 0.01 cm resolution Fourier transform interferometer. The spectra were obtained with pressures between 1 and 10 Torr of CO2 and with total paths between 24 and 384 meters. A compilation of the measured line positions and the assignments derived from the analysis are presented. Of the 3336 lines in the atlas, 94 percent were identified as CO2 lines or as residual lines H2O and CO. Calculated positions are presented for the carbon dioxide lines; a total of 52 bands of C-12O2-16, C-13O2-16, C-12O-16O-18, C-12O-16O-17, and C-13O-16O18 were identified. The weakest carbon dioxide lines marked in the atlas have intensities of approximately 0.5 x 10 to the negative 26th power cm/molecule at room temperature
Granular Packings: Nonlinear elasticity, sound propagation and collective relaxation dynamics
Experiments on isotropic compression of a granular assembly of spheres show
that the shear and bulk moduli vary with the confining pressure faster than the
1/3 power law predicted by Hertz-Mindlin effective medium theories (EMT) of
contact elasticity. Moreover, the ratio between the moduli is found to be
larger than the prediction of the elastic theory by a constant value. The
understanding of these discrepancies has been a longstanding question in the
field of granular matter. Here we perform a test of the applicability of
elasticity theory to granular materials. We perform sound propagation
experiments, numerical simulations and theoretical studies to understand the
elastic response of a deforming granular assembly of soft spheres under
isotropic loading. Our results for the behavior of the elastic moduli of the
system agree very well with experiments. We show that the elasticity partially
describes the experimental and numerical results for a system under
compressional loads. However, it drastically fails for systems under shear
perturbations, particularly for packings without tangential forces and
friction. Our work indicates that a correct treatment should include not only
the purely elastic response but also collective relaxation mechanisms related
to structural disorder and nonaffine motion of grains.Comment: 21 pages, 13 figure
SEA 32 MULTI-DOMAIN, MANNED-UNMANNED LITTORAL DENIAL SYSTEM
This report details a systems engineering approach to design a manned-unmanned, multi-domain, littoral denial system of systems, projected over the next decade. Mission context scenarios were created to provide diverse system operating environments, enabling a flexible system architecture to address a variety of threats in near-peer competition. With efforts to employ cost-effective and attritable unmanned components, open-source platform reviews were conducted to determine performance parameters, cost, and technical readiness levels, ultimately influencing the eligibility and appropriateness of these platforms for system integration. This evaluation led to a value system design for each candidate platform, providing quantitative analysis for its potential contribution to our system functions as they pertain to each mission scenario. An optimization program under cost constraints was then utilized to yield ideal platform combinations while meeting all functional requirements. Each architecture that resulted from the optimization program was then subjected to a combat model to verify its effectiveness, and then compared to conventional littoral denial constructs. Analysis and comparison of each system architecture yielded relevant insights for the project sponsor at OPNAV N9I (Director of Warfare Integration). Each scenario-dependent system of systems yielded improvements in certain functional evaluations, while also producing degradations in other functional areas.Approved for public release. Distribution is unlimited.Major, Republic of Singapore NavyMajor, Brazilian Air ForceLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States Nav
Decoherence due to contacts in ballistic nanostructures
The active region of a ballistic nanostructure is an open quantum-mechanical
system, whose nonunitary evolution (decoherence) towards a nonequilibrium
steady state is determined by carrier injection from the contacts. The purpose
of this paper is to provide a simple theoretical description of the
contact-induced decoherence in ballistic nanostructures, which is established
within the framework of the open systems theory. The active region's evolution
in the presence of contacts is generally non-Markovian. However, if the
contacts' energy relaxation due to electron-electron scattering is sufficiently
fast, then the contacts can be considered memoryless on timescales coarsened
over their energy relaxation time, and the evolution of the current-limiting
active region can be considered Markovian. Therefore, we first derive a general
Markovian map in the presence of a memoryless environment, by coarse-graining
the exact short-time non-Markovian dynamics of an abstract open system over the
environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that
describes carrier injection from the contacts for a generic two-terminal
ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse-graining over the effective memory-loss
time of the contacts, we derive the formulas for the nonequilibrium
steady-state distribution functions of the forward and backward propagating
states in the nanostructure's active region. On the example of a double-barrier
tunneling structure, the present approach yields an I-V curve with all the
prominent resonant features. The relationship to the Landauer-B\"{u}ttiker
formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
- …