101 research outputs found
The effects of caffeinated and decaffeinated coffee on sex hormone-binding globulin and endogenous sex hormone levels: A randomized controlled trial
10.1186/1475-2891-11-86Nutrition Journal111
Coffee intake and CYP1A2*1F genotype predict breast volume in young women: implications for breast cancer
As breast volume may be associated with heart cancer risk, we studied the relationship between breast volume, CYP1A2*1F and coffee intake. Among healthy premenopausal non-hormone users, 3+ cups per day was associated with lower volume only in C-allele carriers (Pinteraction=0.02), which is consistent with reports that coffee protects only C-allele carriers against breast cancer
Do serum biomarkers really measure breast cancer?
Background
Because screening mammography for breast cancer is less effective for premenopausal women, we investigated the feasibility of a diagnostic blood test using serum proteins.
Methods
This study used a set of 98 serum proteins and chose diagnostically relevant subsets via various feature-selection techniques. Because of significant noise in the data set, we applied iterated Bayesian model averaging to account for model selection uncertainty and to improve generalization performance. We assessed generalization performance using leave-one-out cross-validation (LOOCV) and receiver operating characteristic (ROC) curve analysis.
Results
The classifiers were able to distinguish normal tissue from breast cancer with a classification performance of AUC = 0.82 ± 0.04 with the proteins MIF, MMP-9, and MPO. The classifiers distinguished normal tissue from benign lesions similarly at AUC = 0.80 ± 0.05. However, the serum proteins of benign and malignant lesions were indistinguishable (AUC = 0.55 ± 0.06). The classification tasks of normal vs. cancer and normal vs. benign selected the same top feature: MIF, which suggests that the biomarkers indicated inflammatory response rather than cancer.
Conclusion
Overall, the selected serum proteins showed moderate ability for detecting lesions. However, they are probably more indicative of secondary effects such as inflammation rather than specific for malignancy.United States. Dept. of Defense. Breast Cancer Research Program (Grant No. W81XWH-05-1-0292)National Institutes of Health (U.S.) (R01 CA-112437-01)National Institutes of Health (U.S.) (NIH CA 84955
Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model
Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven.
Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer.
Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis.
Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy
The unsupported upper limb exercise test in people without disabilities: assessing the within-day test–retest reliability and the effects of age and gender
Purpose: To estimate the within-day test–retest reliability and standard error of measurement (SEM) of the unsupported upper limb exercise test (UULEX) in adults without disabilities and to determine the effects of age and gender on performance of the UULEX. Method: A cross-sectional study was conducted with 100 adults without disabilities (44 men, mean age 44.2 [SD 26] y; 56 women, mean age 38.1 [SD 24.1] y). Participants performed three UULEX tests to establish within-day reliability, measured using an intra-class correlation coefficient (ICC) model 2 (two-way random effects) with a single rater (ICC[2,1]) and SEM. The effects of age and gender were examined using two-factor mixed-design analysis of variance (ANOVA) and one-way repeated-measures ANOVA. For analysis purposes, four sub-groups were created: younger adults, older adults, men, and women. Results: Excellent within-day reliability and a small SEM were found in the four sub-groups (younger adults: ICC[2,1]=0.88; 95% CI: 0.82, 0.92; SEM∼40 s; older adults: ICC[2,1]=0.82; 95% CI: 0.72, 0.90; SEM∼50 s; men: ICC[2,1]=0.93; 95% CI: 0.88, 0.96; SEM∼30 s; women: ICC[2,1]=0.85; 95% CI: 0.78, 0.91; SEM∼45 s). Younger adults took, on average, 308.24 seconds longer than older adults to perform the test; older adults performed significantly better on the third test (p0.05). Conclusion: The within-day test–retest reliability and SEM values of the UULEX may be used to define the magnitude of the error obtained with repeated measures. One UULEX test seems to be adequate for younger adults to achieve reliable results, whereas three tests seem to be needed for older adults.Objectif : évaluer la fiabilité d'un test-retest en une même journée et l'erreur type de mesure (ETM) du test d'exercice des membres supérieurs sans appui (UULEX) chez des adultes sans incapacités et déterminer les effets de l'âge et du sexe sur leur exécution. Méthodologie : les chercheurs ont réalisé une étude transversale auprès de 100 adultes sans incapacités (44 hommes, d'un âge moyen de 44,2 ans [ÉT 26], et 56 femmes, d'un âge moyen de 38,1 ans [ÉT 24,1]). Les participants ont effectué trois UULEX pour établir la fiabilité du test-retest en une même journée, mesurés à l'aide du modèle 2 de coefficient de corrélation intraclasse (ICC, effets aléatoires bilatéraux) comportant un ICC(2,1) et une ETM à un seul évaluateur. Les chercheurs ont examiné les effets de l'âge et du sexe à l'aide d'une analyse de variance bifactorielle à mesures mixtes et d'une analyse de variance unifactorielle à mesures répétées. Pour les besoins de l'analyse, les chercheurs ont créé quatre sous-groupes: jeunes adultes, adultes plus âgés, hommes et femmes. Résultats : les quatre sous-groupes affichaient une excellente fiabilité en une même journée et une petite ETM (jeunes adultes: ICC[2,1]=0,88 [IC 95% : 0,82, 0,92] et ETM∼40 secondes; adultes plus âgés : ICC[2,1]=0,82 [IC 95 % : 0,72, 0,90] et ETM∼50 secondes; hommes: ICC[2,1]=0,93 [IC 95% : 0,88, 0,96] et ETM∼30 secondes; femmes: ICC[2,1]=0,85 [IC 95 % : 0,78, 0,91] et ETM∼45 secondes). En moyenne, les jeunes adultes ont effectué le test pendant 308,24 secondes de plus que les adultes plus âgés; ceux-ci ont obtenu un résultat nettement meilleur au troisième test (p0,05). Conclusion : il est possible d'utiliser la fiabilité de test-retest en une même journée et les valeurs d'ETM de l'UULEX pour définir l'importance de l'erreur obtenue lors de mesures répétées. Un UULEX semble suffire pour que les jeunes adultes obtiennent des résultats fiables, tandis que trois tests semblent nécessaires chez les adultes plus âgés
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …