10,923 research outputs found

    Backscattering Differential Ghost Imaging in Turbid Media

    Full text link
    In this Letter we present experimental results concerning the retrieval of images of absorbing objects immersed in turbid media via differential ghost imaging (DGI) in a backscattering configuration. The method has been applied, for the first time to our knowledge, to the imaging of small thin black objects located at different depths inside a turbid solution of polystyrene nanospheres and its performances assessed via comparison with standard imaging techniques. A simple theoretical model capable of describing the basic optics of DGI in turbid media is proposed.Comment: 5 pages, 6 figure

    Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light

    Get PDF
    High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setup in the reference arm, while leaving untouched the object arm. The product of spatial resolutions of the ghost image and ghost diffraction experiments is shown to overcome a limit which was formerly thought to be achievable only with entangled photons.Comment: 5 pages, 4 figure

    A Bayesian Networks Approach to Operational Risk

    Full text link
    A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank using only internal loss data, and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters. The algorithm has been validated on synthetic time series. It should be stressed that the practical implementation of the proposed algorithm has a small impact on the organizational structure of a bank and requires an investment in human resources limited to the computational area

    Thermal comfort of dual-chamber ski gloves

    Get PDF
    In this work, the special design of a pair of ski gloves has been assessed in terms of thermal comfort. The glove 2in1 Gore-Tex has a dual-chamber construction, with two possible wearing configurations: one called "grip" to maximize finger flexibility and one called "warm" to maximize thermal insulation in extremely cold conditions. The dual-chamber gloves has been compared with two regular ski gloves produced by the same company. An intermittent test on a treadmill was carried out in a climatic chamber: it was made of four intense activity phases, during which the volunteer ran at 9 km/h on a 5% slope for 4 minutes, spaced out by 5- min resting phases. Finger temperature measurements were compared with the thermal sensations expressed by two volunteers during the test

    Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors

    Full text link
    We present our current progress on the design and test of Ti/TiN Multilayer for use in Kinetic Inductance Detectors (KIDs). Sensors based on sub-stoichiometric TiN film are commonly used in several applications. However, it is difficult to control the targeted critical temperature TCT_C, to maintain precise control of the nitrogen incorporation process and to obtain a production uniformity. To avoid these problems we investigated multilayer Ti/TiN films that show a high uniformity coupled with high quality factor, kinetic inductance and inertness of TiN. These features are ideal to realize superconductive microresonator detectors for astronomical instruments application but also for the field of neutrino physics. Using pure Ti and stoichiometric TiN, we developed and tested different multilayer configuration, in term of number of Ti/TiN layers and in term of different interlayer thicknesses. The target was to reach a critical temperature TCT_C around (1÷1.5)(1\div 1.5) K in order to have a low energy gap and slower recombination time (i.e. low generation-recombination noise). The results prove that the superconductive transition can be tuned in the (0.5÷4.6)(0.5\div 4.6) K temperature range properly choosing the Ti thickness in the (0÷15)(0\div 15) nm range, and the TiN thickness in the (5÷100)(5\div 100) nm rang
    corecore