9 research outputs found

    The supragingival biofilm in early childhood caries: Clinical and laboratory protocols and bioinformatics pipelines supporting metagenomics, metatranscriptomics, and metabolomics studies of the oral microbiome

    Get PDF
    Early childhood caries (ECC) is a biofilm-mediated disease. Social, environmental, and behavioral determinants as well as innate susceptibility are major influences on its incidence; however, from a pathogenetic standpoint, the disease is defined and driven by oral dysbiosis. In other words, the disease occurs when the natural equilibrium between the host and its oral microbiome shifts toward states that promote demineralization at the biofilm-tooth surface interface. Thus, a comprehensive understanding of dental caries as a disease requires the characterization of both the composition and the function or metabolic activity of the supragingival biofilm according to well-defined clinical statuses. However, taxonomic and functional information of the supragingival biofilm is rarely available in clinical cohorts, and its collection presents unique challenges among very young children. This paper presents a protocol and pipelines available for the conduct of supragingival biofilm microbiome studies among children in the primary dentition, that has been designed in the context of a large-scale population-based genetic epidemiologic study of ECC. The protocol is being developed for the collection of two supragingival biofilm samples from the maxillary primary dentition, enabling downstream taxonomic (e.g., metagenomics) and functional (e.g., transcriptomics and metabolomics) analyses. The protocol is being implemented in the assembly of a pediatric precision medicine cohort comprising over 6000 participants to date, contributing social, environmental, behavioral, clinical, and biological data informing ECC and other oral health outcomes

    Exploring the genomic basis of early childhood caries: a pilot study

    Get PDF
    Objective: A genetic component in early childhood caries (ECC) is theorized, but no genome-wide investigations of ECC have been conducted. This pilot study is part of a long-term research program aimed to: (1) determine the proportion of ECC variance attributable to the human genome and (2) identify ECC-associated genetic loci. Methods: The study's community-based sample comprised 212 children (mean age=39 months; range = 30–52 months; males = 55%; Hispanic/Latino = 35%, African-American = 32%; American Academy of Pediatric Dentistry definition of ECC prevalence = 38%). Approximately 2.4 million single nucleotide polymorphisms (SNPs) were genotyped using DNA purified from saliva. A P < 5 × 10−8 criterion was used for genome-wide significance. SNPs with P < 5 × 10−5 were followed-up in three independent cohorts of 921 preschool-age children with similar ECC prevalence. Results: SNPs with minor allele frequency ≥5% explained 52% (standard error = 54%) of ECC variance (one-sided P = 0.03). Unsurprisingly, given the pilot's small sample size, no genome-wide significant associations were found. An intergenic locus on 4q32 (rs4690994) displayed the strongest association with ECC [P = 2.3 × 10−6; odds ratio (OR) = 3.5; 95% confidence interval (CI) = 2.1–5.9]. Thirteen loci with suggestive associations were followed-up – none showed evidence of association in the replication samples. Conclusion: This study's findings support a heritable component of ECC and demonstrate the feasibility of conducting genomics studies among preschool-age children
    corecore